11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tandem Mass Spectrum Identification via Cascaded Search

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accurate assignment of peptide sequences to observed fragmentation spectra is hindered by the large number of hypotheses that must be considered for each observed spectrum. A high score assigned to a particular peptide–spectrum match (PSM) may not end up being statistically significant after multiple testing correction. Researchers can mitigate this problem by controlling the hypothesis space in various ways: considering only peptides resulting from enzymatic cleavages, ignoring possible post-translational modifications or single nucleotide variants, etc. However, these strategies sacrifice identifications of spectra generated by rarer types of peptides. In this work, we introduce a statistical testing framework, cascade search, that directly addresses this problem. The method requires that the user specify a priori a statistical confidence threshold as well as a series of peptide databases. For instance, such a cascade of databases could include fully tryptic, semitryptic, and nonenzymatic peptides or peptides with increasing numbers of modifications. Cascaded search then gradually expands the list of candidate peptides from more likely peptides toward rare peptides, sequestering at each stage any spectrum that is identified with a specified statistical confidence. We compare cascade search to a standard procedure that lumps all of the peptides into a single database, as well as to a previously described group FDR procedure that computes the FDR separately within each database. We demonstrate, using simulated and real data, that cascade search identifies more spectra at a fixed FDR threshold than with either the ungrouped or grouped approach. Cascade search thus provides a general method for maximizing the number of identified spectra in a statistically rigorous fashion.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search.

          We present a statistical model to estimate the accuracy of peptide assignments to tandem mass (MS/MS) spectra made by database search applications such as SEQUEST. Employing the expectation maximization algorithm, the analysis learns to distinguish correct from incorrect database search results, computing probabilities that peptide assignments to spectra are correct based upon database search scores and the number of tryptic termini of peptides. Using SEQUEST search results for spectra generated from a sample of known protein components, we demonstrate that the computed probabilities are accurate and have high power to discriminate between correctly and incorrectly assigned peptides. This analysis makes it possible to filter large volumes of MS/MS database search results with predictable false identification error rates and can serve as a common standard by which the results of different research groups are compared.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TANDEM: matching proteins with tandem mass spectra.

            Tandem mass spectra obtained from fragmenting peptide ions contain some peptide sequence specific information, but often there is not enough information to sequence the original peptide completely. Several proprietary software applications have been developed to attempt to match the spectra with a list of protein sequences that may contain the sequence of the peptide. The application TANDEM was written to provide the proteomics research community with a set of components that can be used to test new methods and algorithms for performing this type of sequence-to-data matching. The source code and binaries for this software are available at http://www.proteome.ca/opensource.html, for Windows, Linux and Macintosh OSX. The source code is made available under the Artistic License, from the authors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Open mass spectrometry search algorithm.

              Large numbers of MS/MS peptide spectra generated in proteomics experiments require efficient, sensitive and specific algorithms for peptide identification. In the Open Mass Spectrometry Search Algorithm (OMSSA), specificity is calculated by a classic probability score using an explicit model for matching experimental spectra to sequences. At default thresholds, OMSSA matches more spectra from a standard protein cocktail than a comparable algorithm. OMSSA is designed to be faster than published algorithms in searching large MS/MS datasets.
                Bookmark

                Author and article information

                Journal
                J Proteome Res
                J. Proteome Res
                pr
                jprobs
                Journal of Proteome Research
                American Chemical Society
                1535-3893
                1535-3907
                18 June 2016
                18 June 2015
                07 August 2015
                : 14
                : 8
                : 3027-3038
                Affiliations
                [1]Department of Genome Sciences, University of Washington , Seattle, Washington 98195, United States
                [2]School of Mathematics and Statistics, University of Sydney , Camperdown, NSW 2006, Australia
                [3]Department of Genome Sciences, Department of Computer Science and Engineering, University of Washington , Seattle, Washington 98195, United States
                Author notes
                [* ]Phone: 1 206 221 4973. E-mail: william-noble@ 123456uw.edu .
                Article
                10.1021/pr501173s
                4533645
                26084232
                bd6e8209-4c58-46ce-b36f-215d7ac55eea
                Copyright © 2015 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 11 November 2014
                Categories
                Article
                Custom metadata
                pr501173s
                pr-2014-01173s

                Molecular biology
                peptide assignment,spectrum identification,fdr control
                Molecular biology
                peptide assignment, spectrum identification, fdr control

                Comments

                Comment on this article