3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessing the susceptibility of schools to flood events in Iran

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Catastrophic floods cause deaths, injuries, and property damages in communities around the world. The losses can be worse among those who are more vulnerable to exposure and this can be enhanced by communities’ vulnerabilities. People in undeveloped and developing countries, like Iran, are more vulnerable and may be more exposed to flood hazards. In this study we investigate the vulnerabilities of 1622 schools to flood hazard in Chaharmahal and Bakhtiari Province, Iran. We used four machine learning models to produce flood susceptibility maps. The analytic hierarchy process method was enhanced with distance from schools to create a school-focused flood-risk map. The results indicate that 492 rural schools and 147 urban schools are in very high-risk locations. Furthermore, 54% of rural students and 8% of urban students study schools in locations of very high flood risk. The situation should be examined very closely and mitigating actions are urgently needed.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: not found
          • Article: not found

          Random Forests

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Re-epithelialization and immune cell behaviour in an ex vivo human skin model

            A large body of literature is available on wound healing in humans. Nonetheless, a standardized ex vivo wound model without disruption of the dermal compartment has not been put forward with compelling justification. Here, we present a novel wound model based on application of negative pressure and its effects for epidermal regeneration and immune cell behaviour. Importantly, the basement membrane remained intact after blister roof removal and keratinocytes were absent in the wounded area. Upon six days of culture, the wound was covered with one to three-cell thick K14+Ki67+ keratinocyte layers, indicating that proliferation and migration were involved in wound closure. After eight to twelve days, a multi-layered epidermis was formed expressing epidermal differentiation markers (K10, filaggrin, DSG-1, CDSN). Investigations about immune cell-specific manners revealed more T cells in the blister roof epidermis compared to normal epidermis. We identified several cell populations in blister roof epidermis and suction blister fluid that are absent in normal epidermis which correlated with their decrease in the dermis, indicating a dermal efflux upon negative pressure. Together, our model recapitulates the main features of epithelial wound regeneration, and can be applied for testing wound healing therapies and investigating underlying mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A working guide to boosted regression trees.

              1. Ecologists use statistical models for both explanation and prediction, and need techniques that are flexible enough to express typical features of their data, such as nonlinearities and interactions. 2. This study provides a working guide to boosted regression trees (BRT), an ensemble method for fitting statistical models that differs fundamentally from conventional techniques that aim to fit a single parsimonious model. Boosted regression trees combine the strengths of two algorithms: regression trees (models that relate a response to their predictors by recursive binary splits) and boosting (an adaptive method for combining many simple models to give improved predictive performance). The final BRT model can be understood as an additive regression model in which individual terms are simple trees, fitted in a forward, stagewise fashion. 3. Boosted regression trees incorporate important advantages of tree-based methods, handling different types of predictor variables and accommodating missing data. They have no need for prior data transformation or elimination of outliers, can fit complex nonlinear relationships, and automatically handle interaction effects between predictors. Fitting multiple trees in BRT overcomes the biggest drawback of single tree models: their relatively poor predictive performance. Although BRT models are complex, they can be summarized in ways that give powerful ecological insight, and their predictive performance is superior to most traditional modelling methods. 4. The unique features of BRT raise a number of practical issues in model fitting. We demonstrate the practicalities and advantages of using BRT through a distributional analysis of the short-finned eel (Anguilla australis Richardson), a native freshwater fish of New Zealand. We use a data set of over 13 000 sites to illustrate effects of several settings, and then fit and interpret a model using a subset of the data. We provide code and a tutorial to enable the wider use of BRT by ecologists.
                Bookmark

                Author and article information

                Contributors
                hr.pourghasemi@shirazu.ac.ir
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                22 October 2020
                22 October 2020
                2020
                : 10
                : 18114
                Affiliations
                [1 ]GRID grid.473705.2, ISNI 0000 0001 0681 7351, Soil Conservation and Watershed Management Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, , AREEO, ; Shahrekord, Iran
                [2 ]GRID grid.412573.6, ISNI 0000 0001 0745 1259, Department of Natural Resources and Environmental Engineering, College of Agriculture, , Shiraz University, ; Shiraz, Iran
                [3 ]GRID grid.467013.7, ISNI 0000 0004 0373 2952, Soil Conservation and Watershed Management Research Department, , Kurdistan Agricultural and Natural Resources Research and Education Center, AREEO, ; Sanandaj, Iran
                [4 ]GRID grid.412266.5, ISNI 0000 0001 1781 3962, Department of Watershed Management Engineering, College of Natural Resources, , Tarbiat Modares University, ; Tehran, Iran
                [5 ]GRID grid.264772.2, ISNI 0000 0001 0682 245X, Department of Geography, , Texas State University, ; San Marcos, TX USA
                Article
                75291
                10.1038/s41598-020-75291-3
                7581815
                33093648
                bd64441c-e7e4-4bc9-b48c-d71f8de1c9f1
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 July 2020
                : 14 October 2020
                Funding
                Funded by: Shiraz University
                Award ID: 98GRC1M271143
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                environmental sciences,natural hazards
                Uncategorized
                environmental sciences, natural hazards

                Comments

                Comment on this article