5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Smart and Multifunctional Fiber‐Reinforced Composites of 2D Heterostructure‐Based Textiles

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Smart and multifunctional fiber reinforced polymer (FRP) composites with energy storage, sensing, and heating capabilities have gained significant interest for automotive, civil, and aerospace applications. However, achieving smart and multifunctional capabilities in an FRP composite while maintaining desired mechanical properties remains challenging. Here, a novel approach for layer‐by‐layer (LBL) deposition of 2D material (graphene and molybdenum disulfide, MoS 2)‐based heterostructure onto glass fiber fabric using a highly scalable manufacturing technique at a remarkable speed of ≈150 m min −1 is reported. This process enables the creation of smart textiles with integrated energy storage, sensing, and heating functionalities. This methodology combines gel‐based electrolyte with a vacuum resin infusion technique, resulting in an efficient and stable smart FRP composite with an areal capacitance of up to ≈182 µF cm 2 at 10 mV s −1. The composite exhibits exceptional cyclic stability, maintaining ≈90% capacitance after 1000 cycles. Moreover, the smart composite demonstrates joule heating, reaching from ≈24 to ≈27 °C within 120 s at 25 V. Additionally, the smart composite displays strain sensitivity by altering electrical resistance with longitudinal strain, enabling structural health monitoring. These findings highlight the potential of smart composites for multifunctional applications and provide an important step toward realizing their actual real‐world applications.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Measurement of the elastic properties and intrinsic strength of monolayer graphene.

          We measured the elastic properties and intrinsic breaking strength of free-standing monolayer graphene membranes by nanoindentation in an atomic force microscope. The force-displacement behavior is interpreted within a framework of nonlinear elastic stress-strain response, and yields second- and third-order elastic stiffnesses of 340 newtons per meter (N m(-1)) and -690 Nm(-1), respectively. The breaking strength is 42 N m(-1) and represents the intrinsic strength of a defect-free sheet. These quantities correspond to a Young's modulus of E = 1.0 terapascals, third-order elastic stiffness of D = -2.0 terapascals, and intrinsic strength of sigma(int) = 130 gigapascals for bulk graphite. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Laser scribing of high-performance and flexible graphene-based electrochemical capacitors.

            Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, charge and discharge faster than batteries, they are still limited by low energy densities and slow rate capabilities. We used a standard LightScribe DVD optical drive to do the direct laser reduction of graphite oxide films to graphene. The produced films are mechanically robust, show high electrical conductivity (1738 siemens per meter) and specific surface area (1520 square meters per gram), and can thus be used directly as EC electrodes without the need for binders or current collectors, as is the case for conventional ECs. Devices made with these electrodes exhibit ultrahigh energy density values in different electrolytes while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-power, flexible electronics.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              2D materials and van der Waals heterostructures

                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                October 2023
                August 07 2023
                October 2023
                : 33
                : 40
                Affiliations
                [1 ] Centre for Print Research The University of the West of England Bristol BS16 1QY UK
                [2 ] Department of Fibres and Textile Processing Technology Institute of Chemical Technology Matunga (E) Mumbai 400019 India
                [3 ] Department of Design and Engineering Bournemouth University Talbot Campus Poole BH12 5BB UK
                [4 ] Institute for Functional Intelligent Materials Department of Materials Science and Engineering National University of Singapore Singapore 117575 Singapore
                [5 ] National Graphene Institute (NGI) The University of Manchester Oxford Road Manchester M13 9PL UK
                Article
                10.1002/adfm.202305901
                bd4bbf2c-c252-4bbe-8323-5e50d6065593
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article