29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Proteomic changes associated with expression of a gene ( ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cytokinins (CKs) are known to regulate leaf senescence and affect heat tolerance, but mechanisms underlying CK regulation of heat tolerance are not well understood. A comprehensive proteomic study was conducted to identify proteins altered by the expression of the adenine isopentenyl transferase ( ipt) gene controlling CK synthesis and associated with heat tolerance in transgenic plants for a C 3 perennial grass species, Agrostis stolonifera. Transgenic plants with two different inducible promoters ( SAG12 and HSP18) and a null transformant (NT) containing the vector without ipt were exposed to 20 °C (control) or 35 °C (heat stress) in growth chambers. Two-dimensional electrophoresis and mass spectrometry analysis were performed to identify protein changes in leaves and roots in response to ipt expression under heat stress. Transformation with ipt resulted in protein changes in leaves and roots involved in multiple functions, particularly in energy metabolism, protein destination and storage, and stress defence. The abundance levels of six leaf proteins (enolase, oxygen-evolving enhancer protein 2, putative oxygen-evolving complex, Rubisco small subunit, Hsp90, and glycolate oxidase) and nine root proteins (Fd-GOGAT, nucleotide-sugar dehydratase, NAD-dependent isocitrate dehydrogenase, ferredoxin-NADP reductase precursor, putative heterogeneous nuclear ribonucleoprotein A2, ascorbate peroxidase, dDTP-glucose 4–6-dehydratases-like protein, and two unknown proteins) were maintained or increased in at least one ipt transgenic line under heat stress. The diversity of proteins altered in transgenic plants in response to heat stress suggests a regulatory role for CKs in various metabolic pathways associated with heat tolerance in C 3 perennial grass species.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: not found
          • Book: not found

          The water culture method of growing plants without soil

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS.

            D ARNON (1949)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heat stress: an overview of molecular responses in photosynthesis.

              The primary targets of thermal damage in plants are the oxygen evolving complex along with the associated cofactors in photosystem II (PSII), carbon fixation by Rubisco and the ATP generating system. Recent investigations on the combined action of moderate light intensity and heat stress suggest that moderately high temperatures do not cause serious PSII damage but inhibit the repair of PSII. The latter largely involves de novo synthesis of proteins, particularly the D1 protein of the photosynthetic machinery that is damaged due to generation of reactive oxygen species (ROS), resulting in the reduction of carbon fixation and oxygen evolution, as well as disruption of the linear electron flow. The attack of ROS during moderate heat stress principally affects the repair system of PSII, but not directly the PSII reaction center (RC). Heat stress additionally induces cleavage and aggregation of RC proteins; the mechanisms of such processes are as yet unclear. On the other hand, membrane linked sensors seem to trigger the accumulation of compatible solutes like glycinebetaine in the neighborhood of PSII membranes. They also induce the expression of stress proteins that alleviate the ROS-mediated inhibition of repair of the stress damaged photosynthetic machinery and are required for the acclimation process. In this review we summarize the recent progress in the studies of molecular mechanisms involved during moderate heat stress on the photosynthetic machinery, especially in PSII.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press
                0022-0957
                1460-2431
                July 2010
                13 June 2010
                13 June 2010
                : 61
                : 12 , Sustainable crop production under drought
                : 3273-3289
                Affiliations
                Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
                Author notes
                [* ]To whom correspondence should be addressed. E-mail: huang@ 123456aesop.rutgers.edu
                Article
                10.1093/jxb/erq149
                2905195
                20547565
                bd29316b-ad0c-4516-b9b0-c0b5c82d7a53
                © 2010 The Author(s).

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

                History
                : 17 December 2009
                : 25 April 2010
                : 10 May 2010
                Categories
                Research Papers

                Plant science & Botany
                high temperature,sag12-ipt,hsp18-ipt,senescence,cytokinins
                Plant science & Botany
                high temperature, sag12-ipt, hsp18-ipt, senescence, cytokinins

                Comments

                Comment on this article