5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Comprehensive Review of Natural Compounds for Wound Healing: Targeting Bioactivity Perspective

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wound healing is a recovering process of damaged tissues by replacing dysfunctional injured cellular structures. Natural compounds for wound treatment have been widely used for centuries. Numerous published works provided reviews of natural compounds for wound healing applications, which separated the approaches based on different categories such as characteristics, bioactivities, and modes of action. However, current studies provide reviews of natural compounds that originated from only plants or animals. In this work, we provide a comprehensive review of natural compounds sourced from both plants and animals that target the different bioactivities of healing to promote wound resolution. The compounds were classified into four main groups (i.e., anti-inflammation, anti-oxidant, anti-bacterial, and collagen promotion), mostly studied in current literature from 1992 to 2022. Those compounds are listed in tables for readers to search for their origin, bioactivity, and targeting phases in wound healing. We also reviewed the trend in using natural compounds for wound healing.

          Related collections

          Most cited references277

          • Record: found
          • Abstract: not found
          • Article: not found

          Chitin and chitosan: Properties and applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wound Healing: A Cellular Perspective

            Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioavailability of curcumin: problems and promises.

              Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of curcumin against various human diseases, including cancer, cardiovascular diseases, diabetes, arthritis, neurological diseases and Crohn's disease, has been documented. Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                September 2022
                August 24 2022
                : 23
                : 17
                : 9573
                Article
                10.3390/ijms23179573
                36076971
                bd197605-95a3-483d-b459-7202be930aff
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article