8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How biofilm changes our understanding of cleaning and disinfection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biofilms are ubiquitous in healthcare settings. By nature, biofilms are less susceptible to antimicrobials and are associated with healthcare-associated infections (HAI). Resistance of biofilm to antimicrobials is multifactorial with the presence of a matrix composed of extracellular polymeric substances and eDNA, being a major contributing factor. The usual multispecies composition of environmental biofilms can also impact on antimicrobial efficacy. In healthcare settings, two main types of biofilms are present: hydrated biofilms, for example, in drains and parts of some medical devices and equipment, and environmental dry biofilms (DSB) on surfaces and possibly in medical devices. Biofilms act as a reservoir for pathogens including multi-drug resistant organisms and their elimination requires different approaches. The control of hydrated (drain) biofilms should be informed by a reduction or elimination of microbial bioburden together with measuring biofilm regrowth time. The control of DSB should be measured by a combination of a reduction or elimination in microbial bioburden on surfaces together with a decrease in bacterial transfer post-intervention. Failure to control biofilms increases the risk for HAI, but biofilms are not solely responsible for disinfection failure or shortcoming. The limited number of standardised biofilm efficacy tests is a hindrance for end users and manufacturers, whilst in Europe there are no approved standard protocols. Education of stakeholders about biofilms and ad hoc efficacy tests, often academic in nature, is thus paramount, to achieve a better control of biofilms in healthcare settings.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial biofilms: from the natural environment to infectious diseases.

          Biofilms--matrix-enclosed microbial accretions that adhere to biological or non-biological surfaces--represent a significant and incompletely understood mode of growth for bacteria. Biofilm formation appears early in the fossil record (approximately 3.25 billion years ago) and is common throughout a diverse range of organisms in both the Archaea and Bacteria lineages, including the 'living fossils' in the most deeply dividing branches of the phylogenetic tree. It is evident that biofilm formation is an ancient and integral component of the prokaryotic life cycle, and is a key factor for survival in diverse environments. Recent advances show that biofilms are structurally complex, dynamic systems with attributes of both primordial multicellular organisms and multifaceted ecosystems. Biofilm formation represents a protected mode of growth that allows cells to survive in hostile environments and also disperse to colonize new niches. The implications of these survival and propagative mechanisms in the context of both the natural environment and infectious diseases are discussed in this review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Biofilms: Microbial Life on Surfaces

            Microorganisms attach to surfaces and develop biofilms. Biofilm-associated cells can be differentiated from their suspended counterparts by generation of an extracellular polymeric substance (EPS) matrix, reduced growth rates, and the up- and down- regulation of specific genes. Attachment is a complex process regulated by diverse characteristics of the growth medium, substratum, and cell surface. An established biofilm structure comprises microbial cells and EPS, has a defined architecture, and provides an optimal environment for the exchange of genetic material between cells. Cells may also communicate via quorum sensing, which may in turn affect biofilm processes such as detachment. Biofilms have great importance for public health because of their role in certain infectious diseases and importance in a variety of device-related infections. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotic resistance of bacterial biofilms.

              A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains. Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance to antibiotics. Biofilm growth is associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms. Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute to the survival of biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy and they can be treated by chronic suppressive therapy. A promising strategy may be the use of enzymes that can dissolve the biofilm matrix (e.g. DNase and alginate lyase) as well as quorum-sensing inhibitors that increase biofilm susceptibility to antibiotics. (c) 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                maillardj@cardiff.ac.uk
                Journal
                Antimicrob Resist Infect Control
                Antimicrob Resist Infect Control
                Antimicrobial Resistance and Infection Control
                BioMed Central (London )
                2047-2994
                7 September 2023
                7 September 2023
                2023
                : 12
                : 95
                Affiliations
                GRID grid.5600.3, ISNI 0000 0001 0807 5670, School of Pharmacy and Pharmaceutical Sciences, , Cardiff University, ; Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB Wales, UK
                Article
                1290
                10.1186/s13756-023-01290-4
                10483709
                37679831
                bd0a4727-defc-4a68-854c-46dc6e0ad863
                © BioMed Central Ltd., part of Springer Nature 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 6 June 2023
                : 15 August 2023
                Categories
                Review
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Infectious disease & Microbiology
                biofilm,dry surface biofilm,disinfection,resistance
                Infectious disease & Microbiology
                biofilm, dry surface biofilm, disinfection, resistance

                Comments

                Comment on this article