0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prediction of anemia using facial images and deep learning technology in the emergency department

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          According to the WHO, anemia is a highly prevalent disease, especially for patients in the emergency department. The pathophysiological mechanism by which anemia can affect facial characteristics, such as membrane pallor, has been proven to detect anemia with the help of deep learning technology. The quick prediction method for the patient in the emergency department is important to screen the anemic state and judge the necessity of blood transfusion treatment.

          Method

          We trained a deep learning system to predict anemia using videos of 316 patients. All the videos were taken with the same portable pad in the ambient environment of the emergency department. The video extraction and face recognition methods were used to highlight the facial area for analysis. Accuracy and area under the curve were used to assess the performance of the machine learning system at the image level and the patient level.

          Results

          Three tasks were applied for performance evaluation. The objective of Task 1 was to predict patients' anemic states [hemoglobin (Hb) <13 g/dl in men and Hb <12 g/dl in women]. The accuracy of the image level was 82.37%, the area under the curve (AUC) of the image level was 0.84, the accuracy of the patient level was 84.02%, the sensitivity of the patient level was 92.59%, and the specificity of the patient level was 69.23%. The objective of Task 2 was to predict mild anemia (Hb <9 g/dl). The accuracy of the image level was 68.37%, the AUC of the image level was 0.69, the accuracy of the patient level was 70.58%, the sensitivity was 73.52%, and the specificity was 67.64%. The aim of task 3 was to predict severe anemia (Hb <7 g/dl). The accuracy of the image level was 74.01%, the AUC of the image level was 0.82, the accuracy of the patient level was 68.42%, the sensitivity was 61.53%, and the specificity was 83.33%.

          Conclusion

          The machine learning system could quickly and accurately predict the anemia of patients in the emergency department and aid in the treatment decision for urgent blood transfusion. It offers great clinical value and practical significance in expediting diagnosis, improving medical resource allocation, and providing appropriate treatment in the future.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition

              Background Severe traumatic injury continues to present challenges to healthcare systems around the world, and post-traumatic bleeding remains a leading cause of potentially preventable death among injured patients. Now in its fifth edition, this document aims to provide guidance on the management of major bleeding and coagulopathy following traumatic injury and encourages adaptation of the guiding principles described here to individual institutional circumstances and resources. Methods The pan-European, multidisciplinary Task Force for Advanced Bleeding Care in Trauma was founded in 2004, and the current author group included representatives of six relevant European professional societies. The group applied a structured, evidence-based consensus approach to address scientific queries that served as the basis for each recommendation and supporting rationale. Expert opinion and current clinical practice were also considered, particularly in areas in which randomised clinical trials have not or cannot be performed. Existing recommendations were re-examined and revised based on scientific evidence that has emerged since the previous edition and observed shifts in clinical practice. New recommendations were formulated to reflect current clinical concerns and areas in which new research data have been generated. Results Advances in our understanding of the pathophysiology of post-traumatic coagulopathy have supported improved management strategies, including evidence that early, individualised goal-directed treatment improves the outcome of severely injured patients. The overall organisation of the current guideline has been designed to reflect the clinical decision-making process along the patient pathway in an approximate temporal sequence. Recommendations are grouped behind the rationale for key decision points, which are patient- or problem-oriented rather than related to specific treatment modalities. While these recommendations provide guidance for the diagnosis and treatment of major bleeding and coagulopathy, emerging evidence supports the author group’s belief that the greatest outcome improvement can be achieved through education and the establishment of and adherence to local clinical management algorithms. Conclusions A multidisciplinary approach and adherence to evidence-based guidance are key to improving patient outcomes. If incorporated into local practice, these clinical practice guidelines have the potential to ensure a uniform standard of care across Europe and beyond and better outcomes for the severely bleeding trauma patient. Electronic supplementary material The online version of this article (10.1186/s13054-019-2347-3) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Public Health
                Front Public Health
                Front. Public Health
                Frontiers in Public Health
                Frontiers Media S.A.
                2296-2565
                09 November 2022
                2022
                : 10
                : 964385
                Affiliations
                [1] 1Medical School of the Chinese PLA , Beijing, China
                [2] 2Department of General Medicine, The First Center of the Chinese PLA General Hospital , Beijing, China
                [3] 3School of Control Science and Engineering, Shandong University, Jinan , Shandong, China
                [4] 4Luoyang Outpatient Department of 63650 Army Hospital of the Chinese PLA , Luoyang, China
                [5] 5Department of Orthopedics, Chinese PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation , Beijing, China
                Author notes

                Edited by: Vladimir Lj Jakovljevic, University of Kragujevac, Serbia

                Reviewed by: Saneera Hemantha Kulathilake, Rajarata University of Sri Lanka, Sri Lanka; Bin Yang, University of Chester, United Kingdom

                *Correspondence: Bing Ji b.ji@ 123456sdu.edu.cn

                This article was submitted to Digital Public Health, a section of the journal Frontiers in Public Health

                †These authors have contributed equally to this work and share first authorship

                Article
                10.3389/fpubh.2022.964385
                9682145
                36438300
                bcf5a3b1-e7d8-4bdf-9104-7273c984dab8
                Copyright © 2022 Zhang, Lou, Pan, Luo, Zhang, Zhang, Li, Wang, Cui, Ji and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 June 2022
                : 03 October 2022
                Page count
                Figures: 10, Tables: 4, Equations: 0, References: 41, Pages: 10, Words: 6087
                Funding
                Funded by: National Key Research and Development Program of China, doi 10.13039/501100012166;
                Categories
                Public Health
                Original Research

                anemia,deep learning,emergency medicine,facial recognition,diagnosis

                Comments

                Comment on this article