29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Focal adhesion kinase is a regulator of F-actin dynamics : New insights from studies in the testis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During spermatogenesis, spermatogonia (2n, diploid) undergo a series of mitotic divisions as well as differentiation to become spermatocytes, which enter meiosis I to be followed by meiosis II to form round spermatids (1n, haploid), and then differentiate into spermatozoa (1n, haploid) via spermiogenesis. These events take place in the epithelium of the seminiferous tubule, involving extensive junction restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface to allow the transport of developing germ cells across the epithelium. Although structural aspects of these cell-cell junctions have been studied, the underlying mechanism(s) that governs these events has yet to be explored. Earlier studies have shown that a non-receptor protein tyrosine kinase known as focal adhesion kinase (FAK) is a likely regulator of these events due to the stage-specific and spatiotemporal expression of its various phosphorylated/activated forms at the testis-specific anchoring junctions in the testis, as well as its association with actin regulatory proteins. Recent studies have shown that FAK, in particular its two activated phosphorylated forms p-FAK-Tyr 407 and p-FAK-Tyr 397, are crucial regulators in modulating junction restructuring at the Sertoli cell-cell interface at the blood-testis barrier (BTB) known as the basal ectoplasmic specialization (basal ES), as well as at the Sertoli-spermatid interface called apical ES during spermiogenesis via its effects on the filamentous (F)-actin organization at the ES. We herein summarize and critically evaluate the current knowledge regarding the physiological significance of FAK in regulating BTB and apical ES dynamics by governing the conversion of actin filaments at the ES from a “bundled” to a “de-bundled/branched” configuration and vice versa. We also provide a molecular model on the role of FAK in regulating these events based on the latest findings in the field.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis.

          Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spermatogenesis and cycle of the seminiferous epithelium.

            Spermatogenesis is a complex biological process of cellular transformation that produces male haploid germ cells from diploid spermatogonial stem cells. This process has been simplified morphologically by recognizing cellular associations or 'stages' and 'phases' of spermatogenesis, which progress through precisely timed and highly organized cycles. These cycles of spermatogenesis are essential for continuous sperm production, which is dependent upon numerous factors, both intrinsic (Sertoli and germ cells) and extrinsic (androgens, retinoic acids), as well as being species-specific.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer.

              Mitogen-activated protein kinase dual-specificity phosphatase-1 (also called MKP-1, DUSP1, ERP, CL100, HVH1, PTPN10, and 3CH134) is a member of the threonine-tyrosine dual-specificity phosphatases, one of more than 100 protein tyrosine phosphatases. It was first identified approximately 20 years ago, and since that time extensive investigations into both mkp-1 mRNA and protein regulation and function in different cells, tissues, and organs have been conducted. However, no general review on the topic of MKP-1 exists. As the subject matter pertaining to MKP-1 encompasses many branches of the biomedical field, we focus on the role of this protein in cancer development and progression, highlighting the potential role of the mitogen-activated protein kinase (MAPK) family. Section II of this article elucidates the MAPK family cross-talk. Section III reviews the structure of the mkp-1 encoding gene, and the known mechanisms regulating the expression and activity of the protein. Section IV is an overview of the MAPK-specific dual-specificity phosphatases and their role in cancer. In sections V and VI, mkp-1 mRNA and protein are examined in relation to cancer biology, therapeutics, and clinical studies, including a discussion of the potential role of the MAPK family. We conclude by proposing an integrated scheme for MKP-1 and MAPK in cancer.
                Bookmark

                Author and article information

                Journal
                Spermatogenesis
                Spermatogenesis
                SPMG
                Spermatogenesis
                Landes Bioscience
                2156-5554
                2156-5562
                01 July 2013
                21 June 2013
                21 June 2013
                : 3
                : 3
                : e25385
                Affiliations
                The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA
                Author notes
                [* ]Correspondence to: C Yan Cheng, Email: Y-Cheng@ 123456popcbr.rockefeller.edu
                Article
                2013SPMG3-3-Yan 25385
                10.4161/spmg.25385
                3861170
                24381802
                bcf05deb-1ba0-4ae9-a780-1110ccfe5a72
                Copyright © 2013 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 28 March 2013
                : 27 May 2013
                : 08 June 2013
                Categories
                Review

                Human biology
                testis,spermatogenesis,focal adhesion kinase,f-actin,ectoplasmic specialization,seminiferous epithelial cycle

                Comments

                Comment on this article