17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetics of Male Infertility: The Role of DNA Methylation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.

          Related collections

          Most cited references235

          • Record: found
          • Abstract: found
          • Article: not found

          DNA methylation and its basic function.

          In the mammalian genome, DNA methylation is an epigenetic mechanism involving the transfer of a methyl group onto the C5 position of the cytosine to form 5-methylcytosine. DNA methylation regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factor(s) to DNA. During development, the pattern of DNA methylation in the genome changes as a result of a dynamic process involving both de novo DNA methylation and demethylation. As a consequence, differentiated cells develop a stable and unique DNA methylation pattern that regulates tissue-specific gene transcription. In this chapter, we will review the process of DNA methylation and demethylation in the nervous system. We will describe the DNA (de)methylation machinery and its association with other epigenetic mechanisms such as histone modifications and noncoding RNAs. Intriguingly, postmitotic neurons still express DNA methyltransferases and components involved in DNA demethylation. Moreover, neuronal activity can modulate their pattern of DNA methylation in response to physiological and environmental stimuli. The precise regulation of DNA methylation is essential for normal cognitive function. Indeed, when DNA methylation is altered as a result of developmental mutations or environmental risk factors, such as drug exposure and neural injury, mental impairment is a common side effect. The investigation into DNA methylation continues to show a rich and complex picture about epigenetic gene regulation in the central nervous system and provides possible therapeutic targets for the treatment of neuropsychiatric disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The diverse roles of DNA methylation in mammalian development and disease

            DNA methylation is of paramount importance for mammalian embryonic development. DNA methylation has numerous functions: it is implicated in the repression of transposons and genes, but is also associated with actively transcribed gene bodies and, in some cases, with gene activation per se. In recent years, sensitive technologies have been developed that allow the interrogation of DNA methylation patterns from a small number of cells. The use of these technologies has greatly improved our knowledge of DNA methylation dynamics and heterogeneity in embryos and in specific tissues. Combined with genetic analyses, it is increasingly apparent that regulation of DNA methylation erasure and (re-)establishment varies considerably between different developmental stages. In this Review, we discuss the mechanisms and functions of DNA methylation and demethylation in both mice and humans at CpG-rich promoters, gene bodies and transposable elements. We highlight the dynamic erasure and re-establishment of DNA methylation in embryonic, germline and somatic cell development. Finally, we provide insights into DNA methylation gained from studying genetic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              World Health Organization reference values for human semen characteristics.

              Semen quality is taken as a surrogate measure of male fecundity in clinical andrology, male fertility, reproductive toxicology, epidemiology and pregnancy risk assessments. Reference intervals for values of semen parameters from a fertile population could provide data from which prognosis of fertility or diagnosis of infertility can be extrapolated. Semen samples from over 4500 men in 14 countries on four continents were obtained from retrospective and prospective analyses on fertile men, men of unknown fertility status and men selected as normozoospermic. Men whose partners had a time-to-pregnancy (TTP) of < or =12 months were chosen as individuals to provide reference distributions for semen parameters. Distributions were also generated for a population assumed to represent the general population. The following one-sided lower reference limits, the fifth centiles (with 95th percent confidence intervals), were generated from men whose partners had TTP < or = 12 months: semen volume, 1.5 ml (1.4-1.7); total sperm number, 39 million per ejaculate (33-46); sperm concentration, 15 million per ml (12-16); vitality, 58% live (55-63); progressive motility, 32% (31-34); total (progressive + non-progressive) motility, 40% (38-42); morphologically normal forms, 4.0% (3.0-4.0). Semen quality of the reference population was superior to that of the men from the general population and normozoospermic men. The data represent sound reference distributions of semen characteristics of fertile men in a number of countries. They provide an appropriate tool in conjunction with clinical data to evaluate a patient's semen quality and prospects for fertility.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                22 July 2021
                2021
                : 9
                : 689624
                Affiliations
                Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara , Ferrara, Italy
                Author notes

                Edited by: Ozren Bogdanovic, Garvan Institute of Medical Research, Australia

                Reviewed by: José María Santos-Pereira, Andalusian Center for Development Biology (CABD), Spain; Jacqueline Mermoud, University of Marburg, Germany

                *Correspondence: John Charles Rotondo, rtnjnc@ 123456unife.it
                Mauro Tognon, tgm@ 123456unife.it
                Fernanda Martini, mrf@ 123456unife.it

                ORCID: John Charles Rotondo, orcid.org/0000-0001-5179-1525; Carmen Lanzillotti, orcid.org/0000-0003-3253-5985; Chiara Mazziotta, orcid.org/0000-0002-5091-0497; Mauro Tognon, orcid.org/0000-0001-8269-7937; Fernanda Martini, orcid.org/0000-0001-9137-0805

                This article was submitted to Developmental Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2021.689624
                8339558
                34368137
                bcca43d0-92fd-4394-b10c-6f5074bdf4e4
                Copyright © 2021 Rotondo, Lanzillotti, Mazziotta, Tognon and Martini.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 April 2021
                : 17 June 2021
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 235, Pages: 18, Words: 0
                Categories
                Cell and Developmental Biology
                Review

                dna methylation,sperm dna,male infertility,imprinting,infertility,epigenomics,sperm,imprinted genes

                Comments

                Comment on this article