8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rock-paper-scissors: Engineered population dynamics increase genetic stability

      , , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in synthetic biology have led to an arsenal of proof-of-principle bacterial circuits that can be leveraged for applications ranging from therapeutics to bioproduction. A unifying challenge for most applications is the presence of selective pressures that lead to high mutation rates for engineered bacteria. A common strategy is to develop cloning technologies aimed at increasing the fixation time for deleterious mutations in single cells. We adopt a complementary approach that is guided by ecological interactions, whereby cyclical population control is engineered to stabilize the functionality of intracellular gene circuits. Three strains of Escherichia coli were designed such that each strain could kill or be killed by one of the other two strains. The resulting “rock-paper-scissors” dynamic demonstrates rapid cycling of strains in microfluidic devices and leads to an increase in the stability of gene circuit functionality in cell culture.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Programming cells by multiplex genome engineering and accelerated evolution.

          The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colicin biology.

            Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The second wave of synthetic biology: from modules to systems.

              Synthetic biology is a research field that combines the investigative nature of biology with the constructive nature of engineering. Efforts in synthetic biology have largely focused on the creation and perfection of genetic devices and small modules that are constructed from these devices. But to view cells as true 'programmable' entities, it is now essential to develop effective strategies for assembling devices and modules into intricate, customizable larger scale systems. The ability to create such systems will result in innovative approaches to a wide range of applications, such as bioremediation, sustainable energy production and biomedical therapies.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                September 05 2019
                September 06 2019
                September 05 2019
                September 06 2019
                : 365
                : 6457
                : 1045-1049
                Article
                10.1126/science.aaw0542
                6988775
                31488693
                bcb6b781-7ef3-4a17-9db7-277d44cbaab8
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article