18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Reeler Mouse: A Translational Model of Human Neurological Conditions, or Simply a Good Tool for Better Understanding Neurodevelopment?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The first description of the Reeler mutation in mouse dates to more than fifty years ago, and later, its causative gene ( reln) was discovered in mouse, and its human orthologue ( RELN) was demonstrated to be causative of lissencephaly 2 (LIS2) and about 20% of the cases of autosomal-dominant lateral temporal epilepsy (ADLTE). In both human and mice, the gene encodes for a glycoprotein referred to as reelin (Reln) that plays a primary function in neuronal migration during development and synaptic stabilization in adulthood. Besides LIS2 and ADLTE, RELN and/or other genes coding for the proteins of the Reln intracellular cascade have been associated substantially to other conditions such as spinocerebellar ataxia type 7 and 37, VLDLR-associated cerebellar hypoplasia, PAFAH1B1-associated lissencephaly, autism, and schizophrenia. According to their modalities of inheritances and with significant differences among each other, these neuropsychiatric disorders can be modeled in the homozygous ( reln −/−) or heterozygous ( reln +/−) Reeler mouse. The worth of these mice as translational models is discussed, with focus on their construct and face validity. Description of face validity, i.e., the resemblance of phenotypes between the two species, centers onto the histological, neurochemical, and functional observations in the cerebral cortex, hippocampus, and cerebellum of Reeler mice and their human counterparts.

          Related collections

          Most cited references232

          • Record: found
          • Abstract: found
          • Article: not found

          Interneurons of the neocortical inhibitory system.

          Mammals adapt to a rapidly changing world because of the sophisticated cognitive functions that are supported by the neocortex. The neocortex, which forms almost 80% of the human brain, seems to have arisen from repeated duplication of a stereotypical microcircuit template with subtle specializations for different brain regions and species. The quest to unravel the blueprint of this template started more than a century ago and has revealed an immensely intricate design. The largest obstacle is the daunting variety of inhibitory interneurons that are found in the circuit. This review focuses on the organizing principles that govern the diversity of inhibitory interneurons and their circuits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rethinking schizophrenia.

            How will we view schizophrenia in 2030? Schizophrenia today is a chronic, frequently disabling mental disorder that affects about one per cent of the world's population. After a century of studying schizophrenia, the cause of the disorder remains unknown. Treatments, especially pharmacological treatments, have been in wide use for nearly half a century, yet there is little evidence that these treatments have substantially improved outcomes for most people with schizophrenia. These current unsatisfactory outcomes may change as we approach schizophrenia as a neurodevelopmental disorder with psychosis as a late, potentially preventable stage of the illness. This 'rethinking' of schizophrenia as a neurodevelopmental disorder, which is profoundly different from the way we have seen this illness for the past century, yields new hope for prevention and cure over the next two decades.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing.

              Patients with cerebellar damage often present with the cerebellar motor syndrome of dysmetria, dysarthria and ataxia, yet cerebellar lesions can also result in the cerebellar cognitive affective syndrome (CCAS), including executive, visual spatial, and linguistic impairments, and affective dysregulation. We have hypothesized that there is topographic organization in the human cerebellum such that the anterior lobe and lobule VIII contain the representation of the sensorimotor cerebellum; lobules VI and VII of the posterior lobe comprise the cognitive cerebellum; and the posterior vermis is the anatomical substrate of the limbic cerebellum. Here we analyze anatomical, functional neuroimaging, and clinical data to test this hypothesis. We find converging lines of evidence supporting regional organization of motor, cognitive, and limbic behaviors in the cerebellum. The cerebellar motor syndrome results when lesions involve the anterior lobe and parts of lobule VI, interrupting cerebellar communication with cerebral and spinal motor systems. Cognitive impairments occur when posterior lobe lesions affect lobules VI and VII (including Crus I, Crus II, and lobule VIIB), disrupting cerebellar modulation of cognitive loops with cerebral association cortices. Neuropsychiatric disorders manifest when vermis lesions deprive cerebro-cerebellar-limbic loops of cerebellar input. We consider this functional topography to be a consequence of the differential arrangement of connections of the cerebellum with the spinal cord, brainstem, and cerebral hemispheres, reflecting cerebellar incorporation into the distributed neural circuits subserving movement, cognition, and emotion. These observations provide testable hypotheses for future investigations. Copyright (c) 2009 Elsevier Srl. All rights reserved.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                01 December 2019
                December 2019
                : 8
                : 12
                : 2088
                Affiliations
                [1 ]Department of Veterinary Sciences, University of Turin, I-10095 Grugliasco (TO), Italy; laura.lossi@ 123456unito.it (L.L.); claudia.castagna@ 123456unito.it (C.C.)
                [2 ]Department of Psychology, Catholic University of the Sacred Heart, I-20123 Milano (MI), Italy
                Author notes
                [* ]Correspondence: alberto.granato@ 123456unicatt.it (A.G.); adalberto.merighi@ 123456unito.it (A.M.); Tel.: +39-02-7234-8588 (A.G.); +39-011-670-9118 (A.M.)
                Author information
                https://orcid.org/0000-0003-1097-7547
                https://orcid.org/0000-0002-1140-3556
                Article
                jcm-08-02088
                10.3390/jcm8122088
                6947477
                31805691
                bcafdbd6-775a-472e-8a5e-1670fc85b21b
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 October 2019
                : 28 November 2019
                Categories
                Review

                reelin,lis2,adlte,autism,schizophrenia,translational models,gabaergic interneurons,dendritic spines,forebrain,cerebellum

                Comments

                Comment on this article