10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Comparison of Functional Networks Derived From Representational Similarity, Functional Connectivity, and Univariate Analyses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The invention of representational similarity analysis [RSA, following multi-voxel pattern analysis (MVPA)] has allowed cognitive neuroscientists to identify the representational structure of multiple brain regions, moving beyond functional localization. By comparing these structures, cognitive neuroscientists can characterize how brain areas form functional networks. Univariate analysis (UNIVAR) and functional connectivity analysis (FCA) are two other popular methods to identify functional networks. Despite their popularity, few studies have examined the relationship between networks from RSA with those from UNIVAR and FCA. Thus, the aim of the current study is to examine the similarities between neural networks derived from RSA with those from UNIVAR and FCA to explore how these methods relate to each other. We analyzed the data of a previously published study with the three methods and compared the results by performing (partial) correlation and multiple regression analysis. Our findings reveal that neural networks resulting from RSA, UNIVAR, and FCA methods are highly similar to each other even after ruling out the effect of anatomical proximity between the network nodes. Nevertheless, the neural network from each method shows unique organization that cannot be explained by any of the other methods. Thus, we conclude that the RSA, UNIVAR and FCA methods provide similar but not identical information on how brain regions are organized in functional networks.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Distributed and overlapping representations of faces and objects in ventral temporal cortex.

          The functional architecture of the object vision pathway in the human brain was investigated using functional magnetic resonance imaging to measure patterns of response in ventral temporal cortex while subjects viewed faces, cats, five categories of man-made objects, and nonsense pictures. A distinct pattern of response was found for each stimulus category. The distinctiveness of the response to a given category was not due simply to the regions that responded maximally to that category, because the category being viewed also could be identified on the basis of the pattern of response when those regions were excluded from the analysis. Patterns of response that discriminated among all categories were found even within cortical regions that responded maximally to only one category. These results indicate that the representations of faces and objects in ventral temporal cortex are widely distributed and overlapping.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dynamic reconfiguration of human brain networks during learning.

            Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurophysiological architecture of functional magnetic resonance images of human brain.

              We investigated large-scale systems organization of the whole human brain using functional magnetic resonance imaging (fMRI) data acquired from healthy volunteers in a no-task or 'resting' state. Images were parcellated using a prior anatomical template, yielding regional mean time series for each of 90 regions (major cortical gyri and subcortical nuclei) in each subject. Significant pairwise functional connections, defined by the group mean inter-regional partial correlation matrix, were mostly either local and intrahemispheric or symmetrically interhemispheric. Low-frequency components in the time series subtended stronger inter-regional correlations than high-frequency components. Intrahemispheric connectivity was generally related to anatomical distance by an inverse square law; many symmetrical interhemispheric connections were stronger than predicted by the anatomical distance between bilaterally homologous regions. Strong interhemispheric connectivity was notably absent in data acquired from a single patient, minimally conscious following a brainstem lesion. Multivariate analysis by hierarchical clustering and multidimensional scaling consistently defined six major systems in healthy volunteers-- corresponding approximately to four neocortical lobes, medial temporal lobe and subcortical nuclei- - that could be further decomposed into anatomically and functionally plausible subsystems, e.g. dorsal and ventral divisions of occipital cortex. An undirected graph derived by thresholding the healthy group mean partial correlation matrix demonstrated local clustering or cliquishness of connectivity and short mean path length compatible with prior data on small world characteristics of non-human cortical anatomy. Functional MRI demonstrates a neurophysiological architecture of the normal human brain that is anatomically sensible, strongly symmetrical, disrupted by acute brain injury, subtended predominantly by low frequencies and consistent with a small world network topology.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                08 January 2020
                2019
                : 13
                : 1348
                Affiliations
                Laboratory of Biological Psychology, Department of Brain and Cognition, Leuven Brain Institute, KU Leuven , Leuven, Belgium
                Author notes

                Edited by: Amir Shmuel, McGill University, Canada

                Reviewed by: Mete Ozay, PKSHA Technology, Japan; Li Su, University of Cambridge, United Kingdom

                *Correspondence: Haemy Lee Masson, haemy.leemasson@ 123456kuleuven.be

                This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2019.01348
                6960203
                31969801
                bc874aac-f2e3-4394-bf1a-082daa079365
                Copyright © 2020 Pillet, Op de Beeck and Lee Masson.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 April 2019
                : 02 December 2019
                Page count
                Figures: 7, Tables: 2, Equations: 0, References: 55, Pages: 14, Words: 0
                Funding
                Funded by: European Research Council 10.13039/501100000781
                Award ID: ERC-2011-Stg-284101
                Funded by: Fonds Wetenschappelijk Onderzoek 10.13039/501100003130
                Award ID: G088216N
                Categories
                Neuroscience
                Original Research

                Neurosciences
                fmri,multi-voxel pattern analysis (mvpa),representational similarity analysis (rsa),univariate analysis,functional connectivity (fc)

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content87

                Cited by8

                Most referenced authors532