38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nucleolar Assembly of the Rrna Processing Machinery in Living Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To understand how nuclear machineries are targeted to accurate locations during nuclear assembly, we investigated the pathway of the ribosomal RNA (rRNA) processing machinery towards ribosomal genes (nucleolar organizer regions [NORs]) at exit of mitosis. To follow in living cells two permanently transfected green fluorescence protein–tagged nucleolar proteins, fibrillarin and Nop52, from metaphase to G1, 4-D time-lapse microscopy was used. In early telophase, fibrillarin is concentrated simultaneously in prenucleolar bodies (PNBs) and NORs, whereas PNB-containing Nop52 forms later. These distinct PNBs assemble at the chromosome surface. Analysis of PNB movement does not reveal the migration of PNBs towards the nucleolus, but rather a directional flow between PNBs and between PNBs and the nucleolus, ensuring progressive delivery of proteins into nucleoli. This delivery appeared organized in morphologically distinct structures visible by electron microscopy, suggesting transfer of large complexes. We propose that the temporal order of PNB assembly and disassembly controls nucleolar delivery of these proteins, and that accumulation of processing complexes in the nucleolus is driven by pre-rRNA concentration. Initial nucleolar formation around competent NORs appears to be followed by regroupment of the NORs into a single nucleolus 1 h later to complete the nucleolar assembly. This demonstrates the formation of one functional domain by cooperative interactions between different chromosome territories.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Temporal and spatial control of cyclin B1 destruction in metaphase.

          The proteolysis of key regulatory proteins is thought to control progress through mitosis. Here we analyse cyclin B1 degradation in real time and find that it begins as soon as the last chromosome aligns on the metaphase plate, just after the spindle-assembly checkpoint is inactivated. At this point, cyclin B1 staining disappears from the spindle poles and from the chromosomes. Cyclin B1 destruction can subsequently be inactivated throughout metaphase if the spindle checkpoint is reimposed, and this correlates with the reappearance of cyclin B1 on the spindle poles and the chromosomes. These results provide a temporal and spatial link between the spindle-assembly checkpoint and ubiquitin-mediated proteolysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and function in the nucleus.

            Current evidence suggests that the nucleus has a distinct substructure, albeit one that is dynamic rather than a rigid framework. Viral infection, oncogene expression, and inherited human disorders can each cause profound and specific changes in nuclear organization. This review summarizes recent progress in understanding nuclear organization, highlighting in particular the dynamic aspects of nuclear structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The plurifunctional nucleolus.

              T Pederson (1998)
              The nucleolus of eukaryotic cells was first described in the early 19th century and was discovered in the 1960s to be the seat of ribosome synthesis. Although rRNA transcription, rRNA processing and ribosome assembly have been clearly established as major functions of the nucleolus, recent studies suggest that the nucleolus participates in many other aspects of gene expression as well. Thus, the nucleolus has been implicated in the processing or nuclear export of certain mRNAs. In addition, new results indicate that biosyntheses of signal recognition particle RNA and telomerase RNA involve a nucleolar stage and that the nucleolus is also involved in processing of U6 RNA, one of the spliceosomal small nuclear RNAs. Interestingly, these three nucleolus-associated small nuclear RNAs (signal recognition particle RNA, telomerase RNA and U6 RNA) are components of catalytic ribonucleoprotein machines. Finally, recent work has also suggested that some transfer RNA precursors are processed in the nucleolus. The nucleolus may have evolutionarily descended from a proto-eukaryotic minimal genome that was spatially linked to vicinal RNA processing and ribonucleoprotein assembly events involved in gene read-out. The nucleolus of today's eukaryotes, now surrounded by the chromatin of over 2 billion years of genome expansion, may still perform these ancient functions, in addition to ribosome biosynthesis. The plurifunctional nucleolus concept has a strong footing in contemporary data and adds a new perspective to our current picture of the spatial-functional design of the cell nucleus.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                28 May 2001
                : 153
                : 5
                : 1097-1110
                Affiliations
                [a ]Institut Jacques Monod, UMR 7592, 75251 Paris, France
                [b ]Institut Curie/Section de Recherche, UMR 146, 91405 Orsay, France
                [c ]Institut Curie/Section de Recherche, UMR 144, 75248 Paris, France
                Article
                0008070
                10.1083/jcb.153.5.1097
                2174343
                11381093
                bc7ffce9-eb55-4a9e-8742-071b0067926c
                © 2001 The Rockefeller University Press
                History
                : 14 August 2000
                : 2 April 2001
                : 3 April 2001
                Categories
                Original Article

                Cell biology
                time-lapse microscopy,nuclear dynamics,4-d imaging,electron microscopy,prenucleolar body

                Comments

                Comment on this article