5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic Potential of Pien-Tze-Huang: A Review on Its Chemical Composition, Pharmacology, and Clinical Application

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pien-Tze-Huang (PTH) is a famous and commonly used traditional Chinese medicine formula in China. It was first formulated by a royal physician of the Ming Dynasty (around 1555 AD). Recently, PTH has attracted attention worldwide due to its beneficial effects against various diseases, especially cancer. This paper systematically reviewed the up-to-date information on its chemical composition, pharmacology, and clinical application. A range of chemical compounds, mainly ginsenosides and bile acids, have been identified and quantified from PTH. Pharmacological studies indicated that PTH has beneficial effects against various cancers, hepatopathy, and ischemic stroke. Furthermore, PTH has been used clinically to treat various diseases in China, such as colorectal cancer, liver cancer, and hepatitis. In summary, PTH is a potential agent with extensive therapeutic effects for the treatment of various diseases. However, the lack of information on the side effects and toxicity of PTH is a non-negligible issue, which needs to be seriously studied in the future.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Notoginsenoside R1 attenuates experimental inflammatory bowel disease via pregnane X receptor activation.

          Notoginsenoside R1 (R1) is the main bioactive component in Panax notoginseng, an old herb medicine widely used in Asian countries in the treatment of microcirculatory diseases. However, little is known about the effect of R1 on inflammatory bowel disease (IBD). The present study demonstrated that R1 alleviated the severity of dextran sulfate sodium-induced colitis in mice by decreasing the activity of myeloperoxidase, the production of cytokines, the expression of proinflammatory genes, and the phosphorylation of IκB kinase, IκBα, and p65 in the colon. Further studies indicated that R1 dose-dependently activated human/mouse pregnane X receptor (PXR), a known target for decreasing inflammation in IBD, and upregulated the expression of genes involved in xenobiotic metabolism in colorectal cells and the colon. Ligand pocket-filling mutant (S247W/C284W or S247W/C284W/S208W) of the human PXR abrogated the effect of R1 on PXR activation. Time-resolved fluorescence resonance energy transfer PXR competitive binding assay confirmed R1 (ligand) binding affinity. In addition, PXR overexpression inhibited nuclear factor-κB (NF-κB)-luciferase activity, which was potentiated by R1 treatment. PXR knockdown by small interfering RNA demonstrated the necessity of PXR in R1-induced upregulation of the expression of xenobiotic-metabolizing enzymes and downregulation of NF-κB activity. Finally, the anti-inflammatory effect of R1 was confirmed in trinitrobenzene sulfonic acid-induced colitis in mice. These findings suggest that R1 attenuates experimental IBD possibly via the activation of intestinal PXR signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Muscone improves cardiac function in mice after myocardial infarction by alleviating cardiac macrophage-mediated chronic inflammation through inhibition of NF-κB and NLRP3 inflammasome.

            Muscone is the main active monomer of traditional Chinese medicine musk. Previous studies have reported a variety of beneficial effects of muscone. However, the effects of muscone on chronic inflammation after myocardial infarction (MI) are rarely reported. This study evaluated the anti-inflammatory effects of muscone on myocardial infarction by establishing a MI model in mice. We found that muscone remarkably decreased the levels of inflammatory cytokines (IL-1β, TNF-α and IL-6), and ultimately improved cardiac function and survival rate. Furthermore, the main anti-inflammatory effect of muscone was alleviating cardiac macrophage-mediated inflammatory response in heart tissues after MI. Bone marrow-derived macrophages (BMDMs) induced with lipopolysaccharide (LPS) were used as an in vitro inflammation model to further clarify anti-inflammatory mechanisms of muscone. Muscone significantly downregulated the levels of LPS-induced inflammatory cytokines and inhibited NF-κB and NLRP3 inflammasome activation in BMDMs. Moreover, ROS and antioxidant indices in LPS-induced BMDMs were also ameliorated after muscone treatment. To sum up, our study found that muscone alleviated cardiac macrophage-mediated chronic inflammation by inhibiting NF-κB and NLRP3 inflammasome activation, thereby improving cardiac function in MI mice. Besides, the inhibitory effect of muscone on inflammation may be related to the scavenging of ROS. It is suggested that muscone may serve as a promising and effective drug for post-MI treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anticarcinogenic effects of products of heat-processed ginsenoside Re, a major constituent of ginseng berry, on human gastric cancer cells.

              Ginsenoside Re is a triol type triterpene glycoside and is abundantly present in ginseng berry. In the present study, we verified that ginsenoside Re can be transformed into less-polar ginsenosides, namely, Rg2, Rg6, and F4, by heat-processing. The products of heat-processed ginsenoside Re inhibited phosphorylation of CDK2 at Thr160 by upregulation of p21 level, resulting in S phase arrest. The products of heat-processed ginsenoside Re also activated caspase-8, caspase-9, and caspase-3, followed by cleavage of PARP, a substrate of caspase-3, in a dose-dependent manner. Concurrently, alteration of mitochondrial factors such as Bcl-2 and Bax was also observed. Moreover, pretreatment with Z-VAD-fmk abrogated caspase-8, -9, and -3 activations by the products of heat-processed ginsenoside Re. We further confirmed that the anticancer effects of the products of heat-processed ginsenoside Re in AGS cells are mainly mediated via generation of less-polar ginsenosides Rg6 and F4.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                09 September 2019
                September 2019
                : 24
                : 18
                : 3274
                Affiliations
                [1 ]College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China (L.H.) (X.Z.)
                [2 ]Engineering Innovation Center of Marine Biological Resource Development and Utilization, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
                [3 ]State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China (X.C.) (Y.W.)
                Author notes
                [* ]Correspondence: jinjianlu@ 123456um.edu.mo (J.L.); hmq1115@ 123456126.com (M.H.); Tel.: +85-388-224-674 (J.L.); +86-591-2286-1135 (M.H.)
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-2853-1087
                Article
                molecules-24-03274
                10.3390/molecules24183274
                6767116
                31505740
                bc58dc4b-e0bf-4b39-9bc8-39d317bca1e9
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 August 2019
                : 06 September 2019
                Categories
                Review

                pien-tze-huang,chemical composition,pharmacology,clinical application,cancer

                Comments

                Comment on this article