14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A genome-wide copy number association study of osteoporotic fractures points to the 6p25.1 locus

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,   , , , , , , , , , , ,
      Journal of Medical Genetics
      BMJ

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteoporosis is a systemic skeletal disease characterised by reduced bone mineral density and increased susceptibility to fracture; these traits are highly heritable. Both common and rare copy number variants (CNVs) potentially affect the function of genes and may influence disease risk. To identify CNVs associated with osteoporotic bone fracture risk. We performed a genome-wide CNV association study in 5178 individuals from a prospective cohort in the Netherlands, including 809 osteoporotic fracture cases, and performed in silico lookups and de novo genotyping to replicate in several independent studies. A rare (population prevalence 0.14%, 95% CI 0.03% to 0.24%) 210 kb deletion located on chromosome 6p25.1 was associated with the risk of fracture (OR 32.58, 95% CI 3.95 to 1488.89; p = 8.69 × 10(-5)). We performed an in silico meta-analysis in four studies with CNV microarray data and the association with fracture risk was replicated (OR 3.11, 95% CI 1.01 to 8.22; p = 0.02). The prevalence of this deletion showed geographic diversity, being absent in additional samples from Australia, Canada, Poland, Iceland, Denmark, and Sweden, but present in the Netherlands (0.34%), Spain (0.33%), USA (0.23%), England (0.15%), Scotland (0.10%), and Ireland (0.06%), with insufficient evidence for association with fracture risk. These results suggest that deletions in the 6p25.1 locus may predispose to higher risk of fracture in a subset of populations of European origin; larger and geographically restricted studies will be needed to confirm this regional association. This is a first step towards the evaluation of the role of rare CNVs in osteoporosis.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Structural variation of chromosomes in autism spectrum disorder.

          Structural variation (copy number variation [CNV] including deletion and duplication, translocation, inversion) of chromosomes has been identified in some individuals with autism spectrum disorder (ASD), but the full etiologic role is unknown. We performed genome-wide assessment for structural abnormalities in 427 unrelated ASD cases via single-nucleotide polymorphism microarrays and karyotyping. With microarrays, we discovered 277 unbalanced CNVs in 44% of ASD families not present in 500 controls (and re-examined in another 1152 controls). Karyotyping detected additional balanced changes. Although most variants were inherited, we found a total of 27 cases with de novo alterations, and in three (11%) of these individuals, two or more new variants were observed. De novo CNVs were found in approximately 7% and approximately 2% of idiopathic families having one child, or two or more ASD siblings, respectively. We also detected 13 loci with recurrent/overlapping CNV in unrelated cases, and at these sites, deletions and duplications affecting the same gene(s) in different individuals and sometimes in asymptomatic carriers were also found. Notwithstanding complexities, our results further implicate the SHANK3-NLGN4-NRXN1 postsynaptic density genes and also identify novel loci at DPP6-DPP10-PCDH9 (synapse complex), ANKRD11, DPYD, PTCHD1, 15q24, among others, for a role in ASD susceptibility. Our most compelling result discovered CNV at 16p11.2 (p = 0.002) (with characteristics of a genomic disorder) at approximately 1% frequency. Some of the ASD regions were also common to mental retardation loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predictive value of BMD for hip and other fractures.

            The relationship between BMD and fracture risk was estimated in a meta-analysis of data from 12 cohort studies of approximately 39,000 men and women. Low hip BMD was an important predictor of fracture risk. The prediction of hip fracture with hip BMD also depended on age and z score. The aim of this study was to quantify the relationship between BMD and fracture risk and examine the effect of age, sex, time since measurement, and initial BMD value. We studied 9891 men and 29,082 women from 12 cohorts comprising EVOS/EPOS, EPIDOS, OFELY, CaMos, Rochester, Sheffield, Rotterdam, Kuopio, DOES, Hiroshima, and 2 cohorts from Gothenburg. Cohorts were followed for up to 16.3 years and a total of 168,366 person-years. The effect of BMD on fracture risk was examined using a Poisson model in each cohort and each sex separately. Results of the different studies were then merged using weighted coefficients. BMD measurement at the femoral neck with DXA was a strong predictor of hip fractures both in men and women with a similar predictive ability. At the age of 65 years, risk ratio increased by 2.94 (95% CI = 2.02-4.27) in men and by 2.88 (95% CI = 2.31-3.59) in women for each SD decrease in BMD. However, the effect was dependent on age, with a significantly higher gradient of risk at age 50 years than at age 80 years. Although the gradient of hip fracture risk decreased with age, the absolute risk still rose markedly with age. For any fracture and for any osteoporotic fracture, the gradient of risk was lower than for hip fractures. At the age of 65 years, the risk of osteoporotic fractures increased in men by 1.41 per SD decrease in BMD (95% CI = 1.33-1.51) and in women by 1.38 per SD (95% CI = 1.28-1.48). In contrast with hip fracture risk, the gradient of risk increased with age. For the prediction of any osteoporotic fracture (and any fracture), there was a higher gradient of risk the lower the BMD. At a z score of -4 SD, the risk gradient was 2.10 per SD (95% CI = 1.63-2.71) and at a z score of -1 SD, the risk was 1.73 per SD (95% CI = 1.59-1.89) in men and women combined. A similar but less pronounced and nonsignificant effect was observed for hip fractures. Data for ultrasound and peripheral measurements were available from three cohorts. The predictive ability of these devices was somewhat less than that of DXA measurements at the femoral neck by age, sex, and BMD value. We conclude that BMD is a risk factor for fracture of substantial importance and is similar in both sexes. Its validation on an international basis permits its use in case finding strategies. Its use should, however, take account of the variations in predictive value with age and BMD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide association study of copy number variation in 16,000 cases of eight common diseases and 3,000 shared controls

              Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to play an important role in genetic susceptibility to common disease. To address this we undertook a large direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed ~19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated ~50% of all common CNVs larger than 500bp. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell-lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease, IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis, and type 1 diabetes, and TSPAN8 for type 2 diabetes, though in each case the locus had previously been identified in SNP-based studies, reflecting our observation that the majority of common CNVs which are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs which can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
                Bookmark

                Author and article information

                Journal
                Journal of Medical Genetics
                J Med Genet
                BMJ
                0022-2593
                1468-6244
                January 20 2014
                February 2014
                February 2014
                December 16 2013
                : 51
                : 2
                : 122-131
                Article
                10.1136/jmedgenet-2013-102064
                24343915
                bc451ffe-7f36-40e6-83af-ccec1f7b659f
                © 2013
                History

                Comments

                Comment on this article