10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutation of amphioxus Pdx and Cdx demonstrates conserved roles for ParaHox genes in gut, anus and tail patterning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The homeobox genes Pdx and Cdx are widespread across the animal kingdom and part of the small ParaHox gene cluster. Gene expression patterns suggest ancient roles for Pdx and Cdx in patterning the through-gut of bilaterian animals although functional data are available for few lineages. To examine evolutionary conservation of Pdx and Cdx gene functions, we focus on amphioxus, small marine animals that occupy a pivotal position in chordate evolution and in which ParaHox gene clustering was first reported.

          Results

          Using transcription activator-like effector nucleases (TALENs), we engineer frameshift mutations in the Pdx and Cdx genes of the amphioxus Branchiostoma floridae and establish mutant lines. Homozygous Pdx mutants have a defect in amphioxus endoderm, manifest as loss of a midgut region expressing endogenous GFP. The anus fails to open in homozygous Cdx mutants, which also have defects in posterior body extension and epidermal tail fin development. Treatment with an inverse agonist of retinoic acid (RA) signalling partially rescues the axial and tail fin phenotypes indicating they are caused by increased RA signalling. Gene expression analyses and luciferase assays suggest that posterior RA levels are kept low in wild type animals by a likely direct transcriptional regulation of a Cyp26 gene by Cdx. Transcriptome analysis reveals extensive gene expression changes in mutants, with a disproportionate effect of Pdx and Cdx on gut-enriched genes and a colinear-like effect of Cdx on Hox genes.

          Conclusions

          These data reveal that amphioxus Pdx and Cdx have roles in specifying middle and posterior cell fates in the endoderm of the gut, roles that likely date to the origin of Bilateria. This conclusion is consistent with these two ParaHox genes playing a role in the origin of the bilaterian through-gut with a distinct anus, morphological innovations that contributed to ecological change in the Cambrian. In addition, we find that amphioxus Cdx promotes body axis extension through a molecular mechanism conserved with vertebrates. The axial extension role for Cdx dates back at least to the origin of Chordata and may have facilitated the evolution of the post-anal tail and active locomotion in chordates.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum.

          It has been proposed that the Xenopus homeobox gene, XlHbox8, is involved in endodermal differentiation during pancreatic and duodenal development (Wright, C.V.E., Schnegelsberg, P. and De Robertis, E.M. (1988). Development 105, 787-794). To test this hypothesis directly, gene targeting was used to make two different null mutations in the mouse XlHbox8 homolog, pdx-1. In the first, the second pdx-1 exon, including the homeobox, was replaced by a neomycin resistance cassette. In the second, a lacZ reporter was fused in-frame with the N terminus of PDX-1, replacing most of the homeodomain. Neonatal pdx-1 -/- mice are apancreatic, in confirmation of previous reports (Jonsson, J., Carlsson, L., Edlund, T. and Edlund, H. (1994). Nature 371, 606-609). However, the pancreatic buds do form in homozygous mutants, and the dorsal bud undergoes limited proliferation and outgrowth to form a small, irregularly branched, ductular tree. This outgrowth does not contain insulin or amylase-positive cells, but glucagon-expressing cells are found. The rostral duodenum shows a local absence of the normal columnar epithelial lining, villi, and Brunner's glands, which are replaced by a GLUT2-positive cuboidal epithelium resembling the bile duct lining. Just distal of the abnormal epithelium, the numbers of enteroendocrine cells in the villi are greatly reduced. The PDX-1/beta-galactosidase fusion allele is expressed in pancreatic and duodenal cells in the absence of functional PDX-1, with expression continuing into perinatal stages with similar boundaries and expression levels. These results offer additional insight into the role of pdx-1 in the determination and differentiation of the posterior foregut, particularly regarding the proliferation and differentiation of the pancreatic progenitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence.

            The homeodomain protein IPF1 (also known as IDX1, STF1 and PDX1; see Methods) is critical for development of the pancreas in mice and is a key factor for the regulation of the insulin gene in the beta-cells of the endocrine pancreas. Targeted disruption of the Ipf1 gene encoding IPF1 in transgenic mice results in a failure of the pancreas to develop (pancreatic agenesis). Here, we report the identification of a single nucleotide deletion within codon 63 of the human IPF1 gene (13q12.1) in a patient with pancreatic agenesis. The patient is homozygous for the point deletion, whereas both parents are heterozygotes for the same mutation. The deletion was not found in 184 chromosomes from normal individuals, indicating that the mutation is unlikely to be a rare polymorphism. The point deletion causes a frame shift at the C-terminal border of the transactivation domain of IPF1 resulting in the translation of 59 novel codons before termination, aminoproximal to the homeodomain essential for DNA binding. Expression of mutant IPF1 in Cos-1 cells confirms the expression of a prematurely terminated truncated protein of 16 kD. Thus, the affected patient should have no functional IPF1 protein. Given the essential role of IPF1 in pancreas development, it is likely that this autosomal recessive mutation is the cause of the pancreatic agenesis phenotype in this patient. Thus, IPF1 appears to be a critical regulator of pancreas development in humans as well as mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scallop genome provides insights into evolution of bilaterian karyotype and development

              Reconstructing the genomes of bilaterian ancestors is central to our understanding of animal evolution, where knowledge from ancient and/or slow-evolving bilaterian lineages is critical. Here we report a high-quality, chromosome-anchored reference genome for the scallop Patinopecten yessoensis, a bivalve mollusc that has a slow-evolving genome with many ancestral features. Chromosome-based macrosynteny analysis reveals a striking correspondence between the 19 scallop chromosomes and the 17 presumed ancestral bilaterian linkage groups at a level of conservation previously unseen, suggesting that the scallop may have a karyotype close to that of the bilaterian ancestor. Scallop Hox gene expression follows a new mode of subcluster temporal co-linearity that is possibly ancestral and may provide great potential in supporting diverse bilaterian body plans. Transcriptome analysis of scallop mantle eyes finds unexpected diversity in phototransduction cascades and a potentially ancient Pax2/5/8-dependent pathway for noncephalic eyes. The outstanding preservation of ancestral karyotype and developmental control makes the scallop genome a valuable resource for understanding early bilaterian evolution and biology. Supplementary information The online version of this article (doi:10.1038/s41559-017-0120) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                guangli@xmu.edu.cn
                peter.holland@zoo.ox.ac.uk
                Journal
                BMC Biol
                BMC Biol
                BMC Biology
                BioMed Central (London )
                1741-7007
                16 June 2020
                16 June 2020
                2020
                : 18
                : 68
                Affiliations
                [1 ]GRID grid.12955.3a, ISNI 0000 0001 2264 7233, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, , Xiamen University, ; Xiamen, China
                [2 ]GRID grid.4991.5, ISNI 0000 0004 1936 8948, Department of Zoology, , University of Oxford, ; Oxford, OX1 3SZ UK
                [3 ]GRID grid.5841.8, ISNI 0000 0004 1937 0247, Department of Genetics, Microbiology & Statistics, and Institute of Biomedicine (IBUB), , University of Barcelona, ; 08028 Barcelona, Spain
                Author information
                http://orcid.org/0000-0003-1533-9376
                Article
                796
                10.1186/s12915-020-00796-2
                7296684
                32546156
                bc2e1e9c-e76d-4bd2-a067-6a3cf513bfd4
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 8 December 2019
                : 19 May 2020
                Funding
                Funded by: Elizabeth Hannah Jenkinson Fund
                Funded by: FundRef http://dx.doi.org/10.13039/100014440, Ministerio de Ciencia, Innovación y Universidades;
                Award ID: BFU2017-86152-P
                Award ID: n/a
                Funded by: Global Challenges Research Fund
                Award ID: n/a
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 31872186
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100012226, Fundamental Research Funds for the Central Universities;
                Award ID: 20720160056
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Life sciences
                cephalochordate,branchiostoma,homeobox,cambrian,endoderm,tail,retinoic acid,hox cluster,cyp26
                Life sciences
                cephalochordate, branchiostoma, homeobox, cambrian, endoderm, tail, retinoic acid, hox cluster, cyp26

                Comments

                Comment on this article