12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Technological properties of candidate probiotic Lactobacillus plantarum strains

      , , , , ,
      International Dairy Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Complete genome sequence of Lactobacillus plantarum WCFS1.

          The 3,308,274-bp sequence of the chromosome of Lactobacillus plantarum strain WCFS1, a single colony isolate of strain NCIMB8826 that was originally isolated from human saliva, has been determined, and contains 3,052 predicted protein-encoding genes. Putative biological functions could be assigned to 2,120 (70%) of the predicted proteins. Consistent with the classification of L. plantarum as a facultative heterofermentative lactic acid bacterium, the genome encodes all enzymes required for the glycolysis and phosphoketolase pathways, all of which appear to belong to the class of potentially highly expressed genes in this organism, as was evident from the codon-adaptation index of individual genes. Moreover, L. plantarum encodes a large pyruvate-dissipating potential, leading to various end-products of fermentation. L. plantarum is a species that is encountered in many different environmental niches, and this flexible and adaptive behavior is reflected by the relatively large number of regulatory and transport functions, including 25 complete PTS sugar transport systems. Moreover, the chromosome encodes >200 extracellular proteins, many of which are predicted to be bound to the cell envelope. A large proportion of the genes encoding sugar transport and utilization, as well as genes encoding extracellular functions, appear to be clustered in a 600-kb region near the origin of replication. Many of these genes display deviation of nucleotide composition, consistent with a foreign origin. These findings suggest that these genes, which provide an important part of the interaction of L. plantarum with its environment, form a lifestyle adaptation region in the chromosome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Probiotic bacteria: safety, functional and technological properties.

            During the past two decades probiotic (health promoting) micro-organisms have been increasingly included in various types of food products, especially in fermented milks. Several aspects, including safety, functional and technological characteristics, have to be taken into consideration in the selection process of probiotic micro-organisms. Safety aspects include specifications such as origin (healthy human GI-tract), non-pathogenicity and antibiotic resistance characteristics. Functional aspects include viability and persistence in the GI-tract, immunomodulation, antagonistic and antimutagenic properties. Before probiotic strains, chosen on the basis of their good safety and functional characteristics, can benefit the consumer, they must first be able to be manufactured under industrial conditions. Furthermore, they have to survive and retain their functionality during storage, and also in the foods into which they are incorporated without producing off-flavours. Factors related to the technological and sensory aspects of probiotic food production are of utmost importance since only by satisfying the demands of the consumer can the food industry succeed in promoting the consumption of functional probiotic products in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Probiotic bacteria: selective enumeration and survival in dairy foods.

              A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus casei. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, studies have shown low viability of probiotics in market preparations. In order to assess viability of probiotic bacteria, it is important to have a working method for selective enumeration of these probiotic bacteria. Viability of probiotic bacteria is important in order to provide health benefits. Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients such as peptides and amino acids and by sonication of yogurt bacteria. This review will cover selective enumeration and survival of probiotic bacteria in dairy foods.
                Bookmark

                Author and article information

                Journal
                International Dairy Journal
                International Dairy Journal
                Elsevier BV
                09586946
                November 2009
                November 2009
                : 19
                : 11
                : 696-702
                Article
                10.1016/j.idairyj.2009.06.006
                bc2d2a33-2500-4731-880d-398268791caf
                © 2009

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article