10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Slow-Paced Breathing: Influence of Inhalation/Exhalation Ratio and of Respiratory Pauses on Cardiac Vagal Activity

      , , , , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Slow-paced breathing has been shown to enhance the self-regulation abilities of athletes via its influence on cardiac vagal activity. However, the role of certain respiratory parameters (i.e., inhalation/exhalation ratio and presence of a respiratory pause between respiratory phases) still needs to be clarified. The aim of this experiment was to investigate the influence of these respiratory parameters on the effects of slow-paced breathing on cardiac vagal activity. A total of 64 athletes (27 female; Mage = 22, age range = 18–30 years old) participated in a within-subject experimental design. Participants performed six breathing conditions within one session, with a 5 min washout period between each condition. Each condition lasted 5 min, with 30 respiratory cycles, and each respiratory cycle lasted 10 s (six cycles per minute), with inhalation/exhalation ratios of 0.8, 1.0, 1.2; and with or without respiratory pauses (0.4 s) between respiratory phases. Results indicated that the root mean square of successive differences (RMSSD), a marker of cardiac vagal activity, was higher when exhalation was longer than inhalation. The presence of a brief (0.4 s) post-inhalation and post-exhalation respiratory pause did not further influence RMSSD. Athletes practicing slow-paced breathing are recommended to use an inhalation/exhalation ratio in which the exhalation phase is longer than the inhalation phase.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: not found
          • Article: not found

          Heart rate variability: Standards of measurement, physiological interpretation, and clinical use

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kubios HRV--heart rate variability analysis software.

            Kubios HRV is an advanced and easy to use software for heart rate variability (HRV) analysis. The software supports several input data formats for electrocardiogram (ECG) data and beat-to-beat RR interval data. It includes an adaptive QRS detection algorithm and tools for artifact correction, trend removal and analysis sample selection. The software computes all the commonly used time-domain and frequency-domain HRV parameters and several nonlinear parameters. There are several adjustable analysis settings through which the analysis methods can be optimized for different data. The ECG derived respiratory frequency is also computed, which is important for reliable interpretation of the analysis results. The analysis results can be saved as an ASCII text file (easy to import into MS Excel or SPSS), Matlab MAT-file, or as a PDF report. The software is easy to use through its compact graphical user interface. The software is available free of charge for Windows and Linux operating systems at http://kubios.uef.fi. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research – Recommendations for Experiment Planning, Data Analysis, and Data Reporting

              Psychophysiological research integrating heart rate variability (HRV) has increased during the last two decades, particularly given the fact that HRV is able to index cardiac vagal tone. Cardiac vagal tone, which represents the contribution of the parasympathetic nervous system to cardiac regulation, is acknowledged to be linked with many phenomena relevant for psychophysiological research, including self-regulation at the cognitive, emotional, social, and health levels. The ease of HRV collection and measurement coupled with the fact it is relatively affordable, non-invasive and pain free makes it widely accessible to many researchers. This ease of access should not obscure the difficulty of interpretation of HRV findings that can be easily misconstrued, however, this can be controlled to some extent through correct methodological processes. Standards of measurement were developed two decades ago by a Task Force within HRV research, and recent reviews updated several aspects of the Task Force paper. However, many methodological aspects related to HRV in psychophysiological research have to be considered if one aims to be able to draw sound conclusions, which makes it difficult to interpret findings and to compare results across laboratories. Those methodological issues have mainly been discussed in separate outlets, making difficult to get a grasp on them, and thus this paper aims to address this issue. It will help to provide psychophysiological researchers with recommendations and practical advice concerning experimental designs, data analysis, and data reporting. This will ensure that researchers starting a project with HRV and cardiac vagal tone are well informed regarding methodological considerations in order for their findings to contribute to knowledge advancement in their field.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                July 2021
                July 12 2021
                : 13
                : 14
                : 7775
                Article
                10.3390/su13147775
                bbe91762-3b52-4509-9e75-a2e6a9061efe
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article