14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nanotherapeutic approach to tackle chemotherapeutic resistance of cancer stem cells

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          EMT Transition States during Tumor Progression and Metastasis

          Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features. In cancer, EMT is associated with tumor initiation, invasion, metastasis, and resistance to therapy. Recently, it has been demonstrated that EMT is not a binary process, but occurs through distinct cellular states. Here, we review the recent studies that demonstrate the existence of these different EMT states in cancer and the mechanisms regulating their functions. We discuss the different functional characteristics, such as proliferation, propagation, plasticity, invasion, and metastasis associated with the distinct EMT states. We summarize the role of the transcriptional and epigenetic landscapes, gene regulatory network and their surrounding niche in controlling the transition through the different EMT states.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Revisiting the role of ABC transporters in multidrug-resistant cancer

            Most patients who die of cancer have disseminated disease that has become resistant to multiple therapeutic modalities. Ample evidence suggests that the expression of ATP- binding cassette (ABC) transporters, especially the multidrug resistance protein 1 (MDR1, also known as P- glycoprotein or P-gp), which is encoded by ABC subfamily B member 1 ( ABCB1 ), can confer resistance to cytotoxic and targeted chemotherapy. However, the development of MDR1 as a therapeutic target has been unsuccessful. At the time of its discovery, appropriate tools for the characterization and clinical development of MDR1 as a therapeutic target were lacking. Thirty years after the initial cloning and characterization of MDR1 and the implication of two additional ABC transporters, the multidrug resistance associated protein 1 (MRP1; encoded by ABCC1 )), and ABCG2, in multidrug resistance, interest in investigating these transporters as therapeutic targets has waned. However, with the emergence of new data and advanced techniques, we propose to re- evaluate whether these transporters play a clinical role in multidrug resistance. With this Opinion article, we present recent evidence indicating that it is time to revisit the investigation into the role of ABC transporters in efficient drug delivery in various cancer types and at the blood–brain barrier.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Challenges in liver cancer and possible treatment approaches

              Globally, liver cancer is the most frequent fatal malignancy; in the United States, it ranks fifth. Patients are often diagnosed with liver cancer in advanced stages, contributing to its poor prognosis. Of all liver cancer cases, >90% are hepatocellular carcinomas (HCCs) for which chemotherapy and immunotherapy are the best options for therapy. For liver cancer patients, new treatment options are necessary. Use of natural compounds and/or nanotechnology may provide patients with better outcomes with lower systemic toxicity and fewer side effects. Improved treatments can lead to better prognoses. Finally, in this review, we present some of the problems and current treatment options contributing to the poor outcomes for patients with liver cancer.
                Bookmark

                Author and article information

                Journal
                Life Sciences
                Life Sciences
                Elsevier BV
                00243205
                August 2021
                August 2021
                : 279
                : 119667
                Article
                10.1016/j.lfs.2021.119667
                34087280
                bbe03122-95fa-42bf-9ef6-5d5683a5c351
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article