16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Knockdown of long non-coding RNA ANRIL inhibits the proliferation and promotes the apoptosis of Burkitt lymphoma cells through the TGF-β1 signaling pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Burkitt lymphoma (BL) has a high mortality rate and its treatment is currently limited to chemotherapy combined with immunotherapy. The long non-coding RNA antisense non-coding RNA in the INK4 locus (ANRIL) has been identified as an oncogene that can regulate cell proliferation and apoptosis in multiple types of cancer. However, the function of ANRIL in BL remains unknown. The present study aimed to determine the effect of ANRIL on cell proliferation and apoptosis in BL. Reverse transcription-quantitative PCR was used to analyze the expression levels of ANRIL in BL cells. The effect of ANRIL knockdown on BL cells was determined using Cell Counting Kit-8, flow cytometric, western blotting, immunofluorescence staining and Hoechst staining assays. The results revealed that ANRIL silencing inhibited the proliferation and promoted the apoptosis of BL cells. In addition, the expression levels of cyclin D1, E2F transcription factor 1 and Bcl-2 were downregulated, while the expression levels of cyclin-dependent kinase inhibitor 1A, Bcl-2-associated X protein, cleaved-caspase-9/pro-caspase-9 and cleaved-caspase-3/pro-caspase-3 were upregulated. Furthermore, the knockdown of ANRIL activated the TGF-β1 signaling pathway, as evidenced by the upregulated expression levels of TGF-β1, phosphorylated (p)-SMAD2/3/SMAD2/3, p-SMAD1/SMAD1 and sphingosine-1-phosphate receptor 2. Moreover, the protective effect of ANRIL silencing in BL could be inhibited by the TGF-β receptor type I/II dual inhibitor, LY2109761. In conclusion, the findings of the present study suggested that the knockdown of ANRIL may inhibit cell proliferation and promote cell apoptosis in BL by regulating the TGF-β1 signaling pathway, which may provide a novel target for the treatment of BL.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The landscape of long noncoding RNAs in the human transcriptome.

            Long noncoding RNAs (lncRNAs) are emerging as important regulators of tissue physiology and disease processes including cancer. To delineate genome-wide lncRNA expression, we curated 7,256 RNA sequencing (RNA-seq) libraries from tumors, normal tissues and cell lines comprising over 43 Tb of sequence from 25 independent studies. We applied ab initio assembly methodology to this data set, yielding a consensus human transcriptome of 91,013 expressed genes. Over 68% (58,648) of genes were classified as lncRNAs, of which 79% were previously unannotated. About 1% (597) of the lncRNAs harbored ultraconserved elements, and 7% (3,900) overlapped disease-associated SNPs. To prioritize lineage-specific, disease-associated lncRNA expression, we employed non-parametric differential expression testing and nominated 7,942 lineage- or cancer-associated lncRNA genes. The lncRNA landscape characterized here may shed light on normal biology and cancer pathogenesis and may be valuable for future biomarker development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TGFbeta in Cancer.

              The transforming growth factor beta (TGFbeta) signaling pathway is a key player in metazoan biology, and its misregulation can result in tumor development. The regulatory cytokine TGFbeta exerts tumor-suppressive effects that cancer cells must elude for malignant evolution. Yet, paradoxically, TGFbeta also modulates processes such as cell invasion, immune regulation, and microenvironment modification that cancer cells may exploit to their advantage. Consequently, the output of a TGFbeta response is highly contextual throughout development, across different tissues, and also in cancer. The mechanistic basis and clinical relevance of TGFbeta's role in cancer is becoming increasingly clear, paving the way for a better understanding of the complexity and therapeutic potential of this pathway.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                February 2021
                15 December 2020
                15 December 2020
                : 23
                : 2
                : 146
                Affiliations
                [1 ]Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
                [2 ]Department of Geratology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
                Author notes
                Correspondence to: Dr Wenqi Yang, Department of Geratology, The First Affiliated Hospital of Jinzhou Medical University, 2 Section 5 Renmin Street, Jinzhou, Liaoning 121001, P.R. China, E-mail: yangwenqi9999@ 123456163.com
                Article
                MMR-0-0-11785
                10.3892/mmr.2020.11785
                7751452
                33325535
                bbce80d9-4b8f-47f6-b4c2-847a47f5d36d
                Copyright: © Mao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 16 July 2020
                : 06 November 2020
                Categories
                Articles

                burkitt lymphoma,long non-coding rna antisense non-coding rna in the ink4 locus,tgf-β1,proliferation,apoptosis

                Comments

                Comment on this article