1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Flexible photothermal biopaper comprising Cu2+-doped ultralong hydroxyapatite nanowires and black phosphorus nanosheets for accelerated healing of infected wound

      , , , , ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Human skin wounds: a major and snowballing threat to public health and the economy.

          ABSTRACT In the United States, chronic wounds affect 6.5 million patients. An estimated excess of US$25 billion is spent annually on treatment of chronic wounds and the burden is rapidly growing due to increasing health care costs, an aging population and a sharp rise in the incidence of diabetes and obesity worldwide. The annual wound care products market is projected to reach $15.3 billion by 2010. Chronic wounds are rarely seen in individuals who are otherwise healthy. In fact, chronic wound patients frequently suffer from "highly branded" diseases such as diabetes and obesity. This seems to have overshadowed the significance of wounds per se as a major health problem. For example, NIH's Research Portfolio Online Reporting Tool (RePORT; http://report.nih.gov/), directed at providing access to estimates of funding for various disease conditions does list several rare diseases but does not list wounds. Forty million inpatient surgical procedures were performed in the United States in 2000, followed closely by 31.5 million outpatient surgeries. The need for post-surgical wound care is sharply on the rise. Emergency wound care in an acute setting has major significance not only in a war setting but also in homeland preparedness against natural disasters as well as against terrorism attacks. An additional burden of wound healing is the problem of skin scarring, a $12 billion annual market. The immense economic and social impact of wounds in our society calls for allocation of a higher level of attention and resources to understand biological mechanisms underlying cutaneous wound complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications.

            We have developed a biocompatible antibacterial system based on polyethylene glycol functionalized molybdenum disulfide nanoflowers (PEG-MoS2 NFs). The PEG-MoS2 NFs have high near-infrared (NIR) absorption and peroxidase-like activity, which can efficiently catalyze decomposition of low concentration of H2O2 to generate hydroxyl radicals (·OH). The conversion of H2O2 into ·OH can avoid the toxicity of high concentration of H2O2 and the ·OH has higher antibacterial activity, making resistant bacteria more vulnerable and wounds more easily cured. The PEG-MoS2 NFs combine the catalysis with NIR photothermal effect, providing a rapid and effective killing outcome in vitro for Gram-negative ampicillin resistant Escherichia coli (Amp(r) E. coli) and Gram-positive endospore-forming Bacillus subtilis (B. subtilis) as compared to catalytic treatment or photothermal therapy (PTT) alone. Wound healing results indicate that the synergy antibacterial system could be conveniently used for wound disinfection in vivo. Interestingly, glutathione (GSH) oxidation can be accelerated due to the 808 nm irradiation induced hyperthermia at the presence of PEG-MoS2 NFs proved by X-ray near-edge absorption spectra and X-ray spectroscopy. The accelerated GSH oxidation can result in bacterial death more easily. A mechanism based on ·OH-enhanced PTT is proposed to explain the antibacterial process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of nasal carriage in Staphylococcus aureus infections.

              Staphylococcus aureus is a frequent cause of infections in both the community and hospital. Worldwide, the increasing resistance of this pathogen to various antibiotics complicates treatment of S aureus infections. Effective measures to prevent S aureus infections are therefore urgently needed. It has been shown that nasal carriers of S aureus have an increased risk of acquiring an infection with this pathogen. The nose is the main ecological niche where S aureus resides in human beings, but the determinants of the carrier state are incompletely understood. Eradication of S aureus from nasal carriers prevents infection in specific patient categories-eg, haemodialysis and general surgery patients. However, recent randomised clinical trials in orthopaedic and non-surgical patients failed to show the efficacy of eliminating S aureus from the nose to prevent subsequent infection. Thus we must elucidate the mechanisms behind S aureus nasal carriage and infection to be able to develop new preventive strategies. We present an overview of the current knowledge of the determinants (both human and bacterial) and risks of S aureus nasal carriage. Studies on the population dynamics of S aureus are also summarised.
                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                June 2022
                June 2022
                : 437
                : 135347
                Article
                10.1016/j.cej.2022.135347
                bbb7d186-8cec-4e5b-aba2-2405df8ef4f0
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article