0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products

      , , , , , , ,
      Processes
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carbon capture, utilisation and storage (CCUS) is a key area of research for CO2 abatement. To that end, CO2 capture, transport and storage has accrued several decades of development. However, for successful implementation of CCUS, utilisation or conversion of CO2 to valuable products is important. Electrochemical conversion of the captured CO2 to desired products provides one such route. This technique requires a cathode “electrocatalyst” that could favour the desired product selectivity. Copper (Cu) is unique, the only metal “electrocatalyst” demonstrated to produce C2 products including ethylene. In order to achieve high-purity Cu deposits, electrodeposition is widely acknowledged as a straightforward, scalable and relatively inexpensive method. In this review, we discuss in detail the progress in the developments of electrodeposited copper, oxide/halide-derived copper, copper-alloy catalysts for conversion of CO2 to valuable products along with the future challenges.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte

          To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            CO2electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2

              Electrolysis offers an attractive route to upgrade greenhouse gases such as carbon dioxide (CO 2 ) to valuable fuels and feedstocks; however, productivity is often limited by gas diffusion through a liquid electrolyte to the surface of the catalyst. Here, we present a catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport. The CIBH comprises a metal and a superfine ionomer layer with hydrophobic and hydrophilic functionalities that extend gas and ion transport from tens of nanometers to the micrometer scale. By applying this design strategy, we achieved CO 2 electroreduction on copper in 7 M potassium hydroxide electrolyte (pH ≈ 15) with an ethylene partial current density of 1.3 amperes per square centimeter at 45% cathodic energy efficiency.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                PROCCO
                Processes
                Processes
                MDPI AG
                2227-9717
                April 2023
                April 08 2023
                : 11
                : 4
                : 1148
                Article
                10.3390/pr11041148
                bbb1ab9a-2a0d-4bdf-a80f-b3d04f08255f
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article