50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants.

      1 , , ,
      Toxicology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant phenolic compounds such as flavonoids and lignin precursors are important constituents of the human diet. These dietary phytophenolics have been recognized largely as beneficial antioxidants that can scavenge harmful active oxygen species including O(2)(.-), H(2)O(2), .OH, and (1)O(2). Here we review our current understanding of the antioxidant and prooxidant actions of phenolics in plant cells. In plant systems, phytophenolics can act as antioxidants by donating electrons to guaiacol-type peroxidases (GuPXs) for the detoxification of H(2)O(2) produced under stress conditions. As a result of such enzymatic as well as non-enzymatic antioxidant reactions, phenoxyl radicals are formed as the primary oxidized products. Until recently, phenoxyl radicals had been difficult to detect by static electron spin resonance (ESR) because they rapidly change to non-radical products. Application of Zn exerts spin-stabilizing effects on phenoxyl radicals that enables us to analyze the formation and decay kinetics of the radicals. The ESR signals of phenoxyl radicals are eliminated by monodehydroascorbate radical (MDA) reductase, suggesting that phenoxyl radicals, like the ascorbate radical, are enzymatically recycled to parent phenolics. Thus, phenolics in plant cells can form an antioxidant system equivalent to that of ascorbate. In contrast to their antioxidant activity, phytophenolics also have the potential to act as prooxidants under certain conditions. For example, flavonoids and dihydroxycinnamic acids can nick DNA via the production of radicals in the presence of Cu and O(2). Phenoxyl radicals can also initiate lipid peroxidation. Recently, Al, Zn, Ca, Mg and Cd have been found to stimulate phenoxyl radical-induced lipid peroxidation. We discuss the mechanism of phenoxyl radical prooxidant activity in terms of lifetime prolongation by spin-stabilizing agents.

          Related collections

          Author and article information

          Journal
          Toxicology
          Toxicology
          Elsevier BV
          0300-483X
          0300-483X
          Aug 01 2002
          : 177
          : 1
          Affiliations
          [1 ] Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
          Article
          S0300483X02001968
          10.1016/s0300-483x(02)00196-8
          12126796
          bbb03c98-70ea-499a-a351-5a2d37d3d9fe
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content354

          Cited by164