Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
73
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploiting probability density function of deep convolutional autoencoders’ latent space for reliable COVID-19 detection on CT scans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a probabilistic method for classifying chest computed tomography (CT) scans into COVID-19 and non-COVID-19. To this end, we design and train, in an unsupervised manner, a deep convolutional autoencoder (DCAE) on a selected training data set, which is composed only of COVID-19 CT scans. Once the model is trained, the encoder can generate the compact hidden representation (the hidden feature vectors) of the training data set. Afterwards, we exploit the obtained hidden representation to build up the target probability density function (PDF) of the training data set by means of kernel density estimation (KDE). Subsequently, in the test phase, we feed a test CT into the trained encoder to produce the corresponding hidden feature vector, and then, we utilise the target PDF to compute the corresponding PDF value of the test image. Finally, this obtained value is compared to a threshold to assign the COVID-19 label or non-COVID-19 to the test image. We numerically check our approach’s performance (i.e. test accuracy and training times) by comparing it with those of some state-of-the-art methods.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases

          Background Chest CT is used for diagnosis of 2019 novel coronavirus disease (COVID-19), as an important complement to the reverse-transcription polymerase chain reaction (RT-PCR) tests. Purpose To investigate the diagnostic value and consistency of chest CT as compared with comparison to RT-PCR assay in COVID-19. Methods From January 6 to February 6, 2020, 1014 patients in Wuhan, China who underwent both chest CT and RT-PCR tests were included. With RT-PCR as reference standard, the performance of chest CT in diagnosing COVID-19 was assessed. Besides, for patients with multiple RT-PCR assays, the dynamic conversion of RT-PCR results (negative to positive, positive to negative, respectively) was analyzed as compared with serial chest CT scans for those with time-interval of 4 days or more. Results Of 1014 patients, 59% (601/1014) had positive RT-PCR results, and 88% (888/1014) had positive chest CT scans. The sensitivity of chest CT in suggesting COVID-19 was 97% (95%CI, 95-98%, 580/601 patients) based on positive RT-PCR results. In patients with negative RT-PCR results, 75% (308/413) had positive chest CT findings; of 308, 48% were considered as highly likely cases, with 33% as probable cases. By analysis of serial RT-PCR assays and CT scans, the mean interval time between the initial negative to positive RT-PCR results was 5.1 ± 1.5 days; the initial positive to subsequent negative RT-PCR result was 6.9 ± 2.3 days). 60% to 93% of cases had initial positive CT consistent with COVID-19 prior (or parallel) to the initial positive RT-PCR results. 42% (24/57) cases showed improvement in follow-up chest CT scans before the RT-PCR results turning negative. Conclusion Chest CT has a high sensitivity for diagnosis of COVID-19. Chest CT may be considered as a primary tool for the current COVID-19 detection in epidemic areas. A translation of this abstract in Farsi is available in the supplement. - ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR

            Summary In a series of 51 patients with chest CT and RT-PCR assay performed within 3 days, the sensitivity of CT for COVID-19 infection was 98% compared to RT-PCR sensitivity of 71% (p<.001). Introduction In December 2019, an outbreak of unexplained pneumonia in Wuhan [1] was caused by a new coronavirus infection named COVID-19 (Corona Virus Disease 2019). Noncontrast chest CT may be considered for early diagnosis of viral disease, although viral nucleic acid detection using real-time polymerase chain reaction (RT-PCR) remains the standard of reference. Chung et al. reported that chest CT may be negative for viral pneumonia of COVID-19 [2] at initial presentation (3/21 patients). Recently, Xie reported 5/167 (3%) patients who had negative RT-PCR for COVID-19 at initial presentation despite chest CT findings typical of viral pneumonia [3]. The purpose of this study was to compare the sensitivity of chest CT and viral nucleic acid assay at initial patient presentation. Materials and Methods The retrospective analysis was approved by institutional review board and patient consent was waived. Patients at Taizhou Enze Medical Center (Group) Enze Hospital were evaluated from January 19, 2020 to February 4, 2020. During this period, chest CT and RT-PCR (Shanghai ZJ Bio-Tech Co, Ltd, Shanghai, China) was performed for consecutive patients who presented with a history of 1) travel or residential history in Wuhan or local endemic areas or contact with individuals with individuals with fever or respiratory symptoms from these areas within 14 days and 2) had fever or acute respiratory symptoms of unknown cause. In the case of an initial negative RT-PCR test, repeat testing was performed at intervals of 1 day or more. Of these patients, we included all patients who had both noncontrast chest CT scan (slice thickness, 5mm) and RT-PCR testing within an interval of 3 days or less and who had an eventual confirmed diagnosis of COVID-19 infection by RT-PCR testing (Figure 1). Typical and atypical chest CT findings were recorded according to CT features previously described for COVD-19 (4,5). The detection rate of COVID-19 infection based on the initial chest CT and RT-PCR was compared. Statistical analysis was performed using McNemar Chi-squared test with significance at the p <.05 level. Figure 1: Flowchart for patient inclusion. Results 51 patients (29 men and 22 women) were included with median age of 45 (interquartile range, 39- 55) years. All patients had throat swab (45 patients) or sputum samples (6 patients) followed by one or more RT-PCR assays. The average time from initial disease onset to CT was 3 +/- 3 days; the average time from initial disease onset to RT-PCR testing was 3 +/- 3 days. 36/51 patients had initial positive RT-PCR for COVID-19. 12/51 patients had COVID-19 confirmed by two RT-PCR nucleic acid tests (1 to 2 days), 2 patients by three tests (2-5 days) and 1 patient by four tests (7 days) after initial onset. 50/51 (98%) patients had evidence of abnormal CT compatible with viral pneumonia at baseline while one patient had a normal CT. Of 50 patients with abnormal CT, 36 (72%) had typical CT manifestations (e.g. peripheral, subpleural ground glass opacities, often in the lower lobes (Figure 2) and 14 (28%) had atypical CT manifestations (Figure 3) [2]. In this patient sample, difference in detection rate for initial CT (50/51 [98%, 95% CI 90-100%]) patients was greater than first RT-PCR (36/51 [71%, 95%CI 56-83%]) patients (p<.001). Figure 2a: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 2b: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 2c: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 2d: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 3a: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Figure 3b: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Figure 3c: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Figure 3d: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Discussion In our series, the sensitivity of chest CT was greater than that of RT-PCR (98% vs 71%, respectively, p<.001). The reasons for the low efficiency of viral nucleic acid detection may include: 1) immature development of nucleic acid detection technology; 2) variation in detection rate from different manufacturers; 3) low patient viral load; or 4) improper clinical sampling. The reasons for the relatively lower RT-PCR detection rate in our sample compared to a prior report are unknown (3). Our results support the use of chest CT for screening for COVD-19 for patients with clinical and epidemiologic features compatible with COVID-19 infection particularly when RT-PCR testing is negative.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chest CT for Typical 2019-nCoV Pneumonia: Relationship to Negative RT-PCR Testing

              Some patients with positive chest CT findings may present with negative results of real time reverse-transcription–polymerase chain- reaction (RT-PCR) for 2019 novel coronavirus (2019-nCoV). In this report, we present chest CT findings from five patients with 2019-nCoV infection who had initial negative RT-PCR results. All five patients had typical imaging findings, including ground-glass opacity (GGO) (5 patients) and/or mixed GGO and mixed consolidation (2 patients). After isolation for presumed 2019-nCoV pneumonia, all patients were eventually confirmed with 2019-nCoV infection by repeated swab tests. A combination of repeated swab tests and CT scanning may be helpful when for individuals with high clinical suspicion of nCoV infection but negative RT-PCR screening
                Bookmark

                Author and article information

                Contributors
                sima.sarvahrabi@uniroma1.it
                lorenzo.piazzo@uniroma1.it
                alireza.momenzadeh@uniroma1.it
                michele.scarpiniti@uniroma1.it
                enzo.baccarelli@uniroma1.it
                Journal
                J Supercomput
                J Supercomput
                The Journal of Supercomputing
                Springer US (New York )
                0920-8542
                1573-0484
                24 February 2022
                24 February 2022
                : 1-22
                Affiliations
                GRID grid.7841.a, Department of Information Engineering, Electronics and Telecommunications, , Sapienza University of Rome, ; Via Eudossiana 18, 00184 Roma, Italy
                Author information
                http://orcid.org/0000-0002-3164-6256
                Article
                4349
                10.1007/s11227-022-04349-y
                8867464
                bb8e794c-0ce7-445b-aeb2-b8ed3a0e8e26
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 30 January 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004271, Sapienza Universita di Roma;
                Award ID: RM11816426B7A216
                Award ID: MA21816436AA4280
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100010143, Facolta di Medicina e Psicologiaa, Sapienza Universita di Roma;
                Award ID: RM11916B323CE30C
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100004271, Sapienza Universita di Roma;
                Award ID: RM12017294171495
                Award Recipient :
                Funded by: Università degli Studi di Roma La Sapienza
                Categories
                Article

                deep convolutional autoeencoder,kernel density estimation,reconstruction error,hidden representation,covid-19

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content52

                Cited by3

                Most referenced authors490