2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      FTZ polysaccharides ameliorate kidney injury in diabetic mice by regulating gut-kidney axis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          A metagenome-wide association study of gut microbiota in type 2 diabetes.

          Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals. We identified and validated approximately 60,000 type-2-diabetes-associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance. An analysis of 23 additional individuals demonstrated that these gut microbial markers might be useful for classifying type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The abundance and variety of carbohydrate-active enzymes in the human gut microbiota.

            Descriptions of the microbial communities that live on and in the human body have progressed at a spectacular rate over the past 5 years, fuelled primarily by highly parallel DNA-sequencing technologies and associated advances in bioinformatics, and by the expectation that understanding how to manipulate the structure and functions of our microbiota will allow us to affect health and prevent or treat diseases. Among the myriad of genes that have been identified in the human gut microbiome, those that encode carbohydrate-active enzymes (CAZymes) are of particular interest, as these enzymes are required to digest most of our complex repertoire of dietary polysaccharides. In this Analysis article, we examine the carbohydrate-digestive capacity of a simplified but representative mini-microbiome in order to highlight the abundance and variety of bacterial CAZymes that are represented in the human gut microbiota.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models

              Significance We have experimentally investigated the immunoregulatory effects of human gut microbiota in multiple sclerosis (MS). We have identified specific bacteria that are associated with MS and demonstrated that these bacteria regulate T lymphocyte-mediated adaptive immune responses and contribute to the proinflammatory environment in vitro and in vivo. Thus, our results expand the knowledge of the microbial regulation of immunity and may provide a basis for the development of microbiome-based therapeutics in autoimmune diseases.
                Bookmark

                Author and article information

                Journal
                Phytomedicine
                Phytomedicine
                Elsevier BV
                09447113
                September 2023
                September 2023
                : 118
                : 154935
                Article
                10.1016/j.phymed.2023.154935
                37364420
                bb3cda02-566a-4208-b503-5c02f26a73fb
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article