2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Animal and Vegetable Proteins on Gut Microbiota in Subjects with Overweight or Obesity

      , , ,
      Nutrients
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gut microbiota plays a pivotal role in the balance between host health and obesity. The composition of the gut microbiota can be influenced by external factors, among which diet plays a key role. As the source of dietary protein is important to achieve weight loss and gut microbiota modulation, in the literature there is increasing evidence to suggest consuming more plant proteins than animal proteins. In this review, a literature search of clinical trials published until February 2023 was conducted to examine the effect of different macronutrients and dietary patterns on the gut microbiota in subjects with overweight and obesity. Several studies have shown that a higher intake of animal protein, as well as the Western diet, can lead to a decrease in beneficial gut bacteria and an increase in harmful ones typical of obesity. On the other hand, diets rich in plant proteins, such as the Mediterranean diet, lead to a significant increase in anti-inflammatory butyrate-producing bacteria, bacterial diversity and a reduction in pro-inflammatory bacteria. Therefore, since diets rich in fiber, plant protein, and an adequate amount of unsaturated fat may help to beneficially modulate the gut microbiota involved in weight loss, further studies are needed.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Diet rapidly and reproducibly alters the human gut microbiome

          Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut 1–5 , but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals 2 , reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease 6 . In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Health Effects of Overweight and Obesity in 195 Countries over 25 Years.

            Background While the rising pandemic of obesity has received significant attention in many countries, the effect of this attention on trends and the disease burden of obesity remains uncertain. Methods We analyzed data from 67.8 million individuals to assess the trends in obesity and overweight prevalence among children and adults between 1980 and 2015. Using the Global Burden of Disease study data and methods, we also quantified the burden of disease related to high body mass index (BMI), by age, sex, cause, and BMI level in 195 countries between 1990 and 2015. Results In 2015, obesity affected 107.7 million (98.7-118.4) children and 603.7 million (588.2- 619.8) adults worldwide. Obesity prevalence has doubled since 1980 in more than 70 countries and continuously increased in most other countries. Although the prevalence of obesity among children has been lower than adults, the rate of increase in childhood obesity in many countries was greater than the rate of increase in adult obesity. High BMI accounted for 4.0 million (2.7- 5.3) deaths globally, nearly 40% of which occurred among non-obese. More than two-thirds of deaths related to high BMI were due to cardiovascular disease. The disease burden of high BMI has increased since 1990; however, the rate of this increase has been attenuated due to decreases in underlying cardiovascular disease death rates. Conclusions The rapid increase in prevalence and disease burden of elevated BMI highlights the need for continued focus on surveillance of BMI and identification, implementation, and evaluation of evidence-based interventions to address this problem.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enterotypes of the human gut microbiome.

              Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NUTRHU
                Nutrients
                Nutrients
                MDPI AG
                2072-6643
                June 2023
                June 08 2023
                : 15
                : 12
                : 2675
                Article
                10.3390/nu15122675
                37375578
                bb2e6401-04f0-40ed-9d22-cf9844a60e4d
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article