116
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exposure-Dependent Control of Malaria-Induced Inflammation in Children

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In malaria-naïve individuals, Plasmodium falciparum infection results in high levels of parasite-infected red blood cells (iRBCs) that trigger systemic inflammation and fever. Conversely, individuals in endemic areas who are repeatedly infected are often asymptomatic and have low levels of iRBCs, even young children. We hypothesized that febrile malaria alters the immune system such that P. falciparum re-exposure results in reduced production of pro-inflammatory cytokines/chemokines and enhanced anti-parasite effector responses compared to responses induced before malaria. To test this hypothesis we used a systems biology approach to analyze PBMCs sampled from healthy children before the six-month malaria season and the same children seven days after treatment of their first febrile malaria episode of the ensuing season. PBMCs were stimulated with iRBC in vitro and various immune parameters were measured. Before the malaria season, children's immune cells responded to iRBCs by producing pro-inflammatory mediators such as IL-1β, IL-6 and IL-8. Following malaria there was a marked shift in the response to iRBCs with the same children's immune cells producing lower levels of pro-inflammatory cytokines and higher levels of anti-inflammatory cytokines (IL-10, TGF-β). In addition, molecules involved in phagocytosis and activation of adaptive immunity were upregulated after malaria as compared to before. This shift was accompanied by an increase in P. falciparum-specific CD4 +Foxp3 T cells that co-produce IL-10, IFN-γ and TNF; however, after the subsequent six-month dry season, a period of markedly reduced malaria transmission, P. falciparum–inducible IL-10 production remained partially upregulated only in children with persistent asymptomatic infections. These findings suggest that in the face of P. falciparum re-exposure, children acquire exposure-dependent P. falciparum–specific immunoregulatory responses that dampen pathogenic inflammation while enhancing anti-parasite effector mechanisms. These data provide mechanistic insight into the observation that P. falciparum–infected children in endemic areas are often afebrile and tend to control parasite replication.

          Author Summary

          Malaria remains a major cause of disease and death worldwide. When mosquitoes infect people with malaria parasites for the first time, the parasite rapidly multiplies in the blood and the body responds by producing molecules that cause inflammation and fever, and sometimes the infection progresses to life-threatening disease. However, in regions where people are repeatedly infected with malaria parasites, most infections do not cause fever and parasites often do not multiply uncontrollably. For example, in Mali where this study was conducted, children are infected with malaria parasites ≥100 times/year but only get malaria fever ∼2 times/year and often manage to control parasite numbers in the blood. To understand these observations we collected immune cells from the blood of healthy children before the malaria season and 7 days after malaria fever. We simulated malaria infection at these time points by exposing the immune cells to malaria parasites in a test-tube. We found that re-exposing immune cells to parasites after malaria fever results in reduced expression of molecules that cause fever and enhanced expression of molecules involved in parasite killing. These findings help explain how the immune system prevents fever and controls malaria parasite growth in children who are repeatedly infected with malaria parasites.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes.

          Immunological memory in vertebrates is often exclusively attributed to T and B cell function. Recently it was proposed that the enhanced and sustained innate immune responses following initial infectious exposure may also afford protection against reinfection. Testing this concept of "trained immunity," we show that mice lacking functional T and B lymphocytes are protected against reinfection with Candida albicans in a monocyte-dependent manner. C. albicans and fungal cell wall β-glucans induced functional reprogramming of monocytes, leading to enhanced cytokine production in vivo and in vitro. The training required the β-glucan receptor dectin-1 and the noncanonical Raf-1 pathway. Monocyte training by β-glucans was associated with stable changes in histone trimethylation at H3K4, which suggests the involvement of epigenetic mechanisms in this phenomenon. The functional reprogramming of monocytes, reminiscent of similar NK cell properties, supports the concept of "trained immunity" and may be employed for the design of improved vaccination strategies. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9.

            Hemozoin (HZ) is an insoluble crystal formed in the food vacuole of malaria parasites. HZ has been reported to induce inflammation by directly engaging Toll-like receptor (TLR) 9, an endosomal receptor. "Synthetic" HZ (beta-hematin), typically generated from partially purified extracts of bovine hemin, is structurally identical to natural HZ. When HPLC-purified hemin was used to synthesize the crystal, beta-hematin had no inflammatory activity. In contrast, natural HZ from Plasmodium falciparum cultures was a potent TLR9 inducer. Natural HZ bound recombinant TLR9 ectodomain, but not TLR2. Both TLR9 stimulation and TLR9 binding of HZ were abolished by nuclease treatment. PCR analysis demonstrated that natural HZ is coated with malarial but not human DNA. Purified malarial DNA activated TLR9 but only when DNA was targeted directly to the endosome with a transfection reagent. Stimulatory quantities of natural HZ contain <1 microg of malarial DNA; its potency in activating immune responses was even greater than transfecting malarial DNA. Thus, although the malarial genome is extremely AT-rich, its DNA is highly proinflammatory, with the potential to induce cytokinemia and fever during disease. However, its activity depends on being bound to HZ, which we propose amplifies the biological responses to malaria DNA by targeting it to a TLR9(+) intracellular compartment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              T(H)1 cells control themselves by producing interleukin-10.

              Inflammatory T helper 1 (T(H)1)-cell responses successfully eradicate pathogens, but often also cause immunopathology. To minimize this deleterious side-effect the anti-inflammatory cytokine interleukin-10 (IL-10) is produced. Although IL-10 was originally isolated from T(H)2 cells it is now known to be produced by many cell types. Here, we discuss the recent evidence that shows that T(H)1 cells are the main source of IL-10 that controls the immune response against Leishmania major and Toxoplasma gondii infection.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                April 2014
                17 April 2014
                : 10
                : 4
                : e1004079
                Affiliations
                [1 ]Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
                [2 ]Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
                [3 ]Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
                Case Western Reserve University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SP JM SDo DD OKD KKay AO BT PDC. Performed the experiments: SP JM SDo DD YK SDi KKan DES KV SFP SL KKay AO. Analyzed the data: SP JM JS PDC. Wrote the paper: SP JM PDC.

                Article
                PPATHOGENS-D-13-03302
                10.1371/journal.ppat.1004079
                3990727
                24743880
                bb08510d-f51a-4038-9a5b-9bce745727d3
                Copyright @ 2014

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 16 December 2013
                : 5 March 2014
                Page count
                Pages: 16
                Funding
                This work was supported by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Immunology
                Clinical Immunology
                Immunomodulation
                Microbiology
                Protozoology
                Organisms
                Protozoans
                Parasitic Protozoans
                Malarial Parasites
                Plasmodium Falciparum
                Medicine and Health Sciences
                Infectious Diseases
                Parasitic Diseases
                Malaria
                Tropical Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article