8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gyrodactylus molweni sp. n. (Monogenea: Gyrodactylidae) from Chelon richardsonii (Smith, 1846) (Mugilidae) from Table Bay, South Africa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gyrodactylus molweni sp. n. is described from the body surface and fins of the South African mullet, Chelon richardsonii (Smith, 1846) collected from Table Bay Harbour, Cape Town and is compared to five other Gyrodactylus species described from grey mullets globally namely G. zhukovi Ling, 1963 and G. mugili Zhukov, 1970 from Planiliza haematocheila (Temminck and Schlegel, 1845); G. mugelus Rawson, 1973 from Mugil cephalus L. ; G. curemae Conroy and Conroy, 1985 from Mugil curema Valenciennes, 1836 and G. xiamenensis Zang,Yang and Liu, 2001 from Planiliza macrolepis (Smith, 1846). Morphologically, G. molweni sp. n. has prominent ventral bar processes that near cover the hamulus roots, marginal sickles with large rhomboid heels, slender shafts and fine points that extend beyond the sickle toes. Gyrodactylus molweni sp. n. can, however, be readily differentiated: G. mugili and G. xiamenensis have ventral bars with small ventral processes; G. zhukovi has marginal hooks sickles with slender shafts and proportionately short points and open-faced blades; G. mugelus possesses marginal hook sickles with deep, rounded heels, forward slanting shafts and an angular, square line to the inner face of the blades. Although the length of the marginal hooks of G. curemae are similar to G. molweni sp. n., their hamuli are double the size. A GenBank BlastN search with the 931 bp sequence covering ITS1, 5.8S and ITS2 gave no close hits; the nearest species for which sequences are available is G. nipponensis Ogawa and Egusa, 1978 (identity 96.56%, 899/931 bp). The proposal of G. molweni sp. n. as a new species, therefore, is well supported by both the molecular and morphological analyses presented herein. This Gyrodactylus species is the first to be described from C. richardsonii and only the second Gyrodactylus species to be described from the marine environment off the African continent.

          Graphical abstract

          Highlights

          • Gyrodactylus molweni sp. n is described from the body surface and fins of the South African mullet, Chelon richardsonii (Smith, 1846) collected from Table Bay Harbour, Cape Town.

          • The description of Gyrodactylus molweni sp. represents only the second Gyrodactylus species to be described from the Marine environment off the African continent.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          A greedy algorithm for aligning DNA sequences.

          For aligning DNA sequences that differ only by sequencing errors, or by equivalent errors from other sources, a greedy algorithm can be much faster than traditional dynamic programming approaches and yet produce an alignment that is guaranteed to be theoretically optimal. We introduce a new greedy alignment algorithm with particularly good performance and show that it computes the same alignment as does a certain dynamic programming algorithm, while executing over 10 times faster on appropriate data. An implementation of this algorithm is currently used in a program that assembles the UniGene database at the National Center for Biotechnology Information.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Marine Biodiversity in South Africa: An Evaluation of Current States of Knowledge

            Continental South Africa has a coastline of some 3,650 km and an Exclusive Economic Zone (EEZ) of just over 1 million km2. Waters in the EEZ extend to a depth of 5,700 m, with more than 65% deeper than 2,000 m. Despite its status as a developing nation, South Africa has a relatively strong history of marine taxonomic research and maintains comprehensive and well-curated museum collections totaling over 291,000 records. Over 3 million locality records from more than 23,000 species have been lodged in the regional AfrOBIS (African Ocean Biogeographic Information System) data center (which stores data from a wider African region). A large number of regional guides to the marine fauna and flora are also available and are listed. The currently recorded marine biota of South Africa numbers at least 12,914 species, although many taxa, particularly those of small body size, remain poorly documented. The coastal zone is relatively well sampled with some 2,500 samples of benthic invertebrate communities have been taken by grab, dredge, or trawl. Almost none of these samples, however, were collected after 1980, and over 99% of existing samples are from depths shallower than 1,000 m—indeed 83% are from less than 100 m. The abyssal zone thus remains almost completely unexplored. South Africa has a fairly large industrial fishing industry, of which the largest fisheries are the pelagic (pilchard and anchovy) and demersal (hake) sectors, both focused on the west and south coasts. The east coast has fewer, smaller commercial fisheries, but a high coastal population density, resulting in intense exploitation of inshore resources by recreational and subsistence fishers, and this has resulted in the overexploitation of many coastal fish and invertebrate stocks. South Africa has a small aquaculture industry rearing mussels, oysters, prawns, and abalone—the latter two in land-based facilities. Compared with many other developing countries, South Africa has a well-conserved coastline, 23% of which is under formal protection, however deeper waters are almost entirely excluded from conservation areas. Marine pollution is confined mainly to the densely populated KwaZulu-Natal coast and the urban centers of Cape Town and Port Elizabeth. Over 120 introduced or cryptogenic marine species have been recorded, but most of these are confined to the few harbors and sheltered sites along the coast.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The biology of gyrodactylid monogeneans: the "Russian-doll killers".

              This article reviews the history of gyrodactylid research focussing on the unique anatomy, behaviour, ecology and evolution of the viviparous forms while identifying gaps in our knowledge and directions for future research. We provide the first summary of research on the oviparous gyrodactylids from South American catfish, and highlight the plesiomorphic characters shared by gyrodactylids and other primitive monogeneans. Of these, the most important are the crawling, unciliated larva and the spike sensilla of the cephalic lobes. These characters allow gyrodactylids to transfer between hosts at any stage of the life cycle, without a specific transmission stage. We emphasise the importance of progenesis in shaping the evolution of the viviparous genera and discuss the relative extent of progenesis in the different genera. The validity of the familial classification is discussed and we conclude that the most significant division within the family is between the oviparous and the viviparous genera. The older divisions into Isancistrinae and Polyclithrinae should be allowed to lapse. We discuss approaches to the taxonomy of gyrodactylids, and we emphasise the importance of adequate morphological and molecular data in new descriptions. Host specificity patterns in gyrodactylids are discussed extensively and we note the importance of host shifts, revealed by molecular data, in the evolution of gyrodactylids. To date, the most closely related gyrodactylids have not been found on closely related hosts, demonstrating the importance of host shifts in their evolution. The most closely related species pair is that of G. salaris and G. thymalli, and we provide an account of the patterns of evolution taking place in different mitochondrial clades of this species complex. The host specificity of these clades is reviewed, demonstrating that, although each clade has its preferred host, there is a range of specificity to different salmonids, providing opportunities for complex patterns of survival and interbreeding in Scandinavia. At the same time, we identify trends in systematics and phylogeny relevant to the G. salaris epidemics on Atlantic salmon in Norway, which can be applied more generally to parasite epidemiology and evolution. Although much of gyrodactylid research in the last 30 years has been directed towards salmonid parasites, there is great potential in using other experimental systems, such as the gyrodactylids of poeciliids and sticklebacks. We also highlight the role of glacial lakes and modified river systems during the ice ages in gyrodactylid speciation, and suggest that salmon infecting clades of G. salaris first arose from G. thymalli in such lakes, but failed to spread fully across Scandinavia before further dispersal was ended by rising sea levels. This dispersal has been continued by human activity, leading to the appearance of G. salaris as a pathogen in Norway. We review the history and current status of the epidemic, and current strategies for elimination of the parasite from Norway. Finally, we consider opportunities for further spread of the parasite within and beyond Europe.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Parasitol Parasites Wildl
                Int J Parasitol Parasites Wildl
                International Journal for Parasitology: Parasites and Wildlife
                Elsevier
                2213-2244
                07 April 2021
                August 2021
                07 April 2021
                : 15
                : 87-94
                Affiliations
                [a ]Department of Forestry, Fisheries and the Environment, Private Bag X2, Vlaeberg, 8012, South Africa
                [b ]Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X 17, Bellville, 7535, South Africa
                [c ]School of Access Education, Central Queensland University, North Rockhampton, Queensland, 4701, Australia
                [d ]Coastal Marine Ecosystems Research Centre, Central Queensland University, Australia
                [e ]Benchmark R&D (Thailand) Ltd., No. 57/1 Moo 6, Samed Sub-District, Muang Chonburi District, Chonburi Province, 20000, Thailand
                [f ]Norwegian Veterinary Institute, Fish Health Research Group, P.O. Box 750, Sentrum, NO-0106, Oslo, Norway
                Author notes
                []Corresponding author. Department of Forestry, Fisheries and the Environment, Private Bag X2, Vlaeberg, 8012, South Africa. KChristison@ 123456environment.gov.za
                Article
                S2213-2244(21)00025-0
                10.1016/j.ijppaw.2021.02.011
                8102207
                33996440
                bb082ace-d331-4c56-b4da-2b1c5708ba9f
                © 2021 Published by Elsevier Ltd on behalf of Australian Society for Parasitology.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 30 December 2020
                : 14 February 2021
                : 14 February 2021
                Categories
                Articles from the Special Issue 'Africa-Parasites of Wildlife'

                marine,intertidal fish,south african mullet,grey mullet
                marine, intertidal fish, south african mullet, grey mullet

                Comments

                Comment on this article