12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions.

          A key component of whole body physiologically based pharmacokinetic (WBPBPK) models is the tissue-to-plasma water partition coefficients (Kpu's). The predictability of Kpu values using mechanistically derived equations has been investigated for 7 very weak bases, 20 acids, 4 neutral drugs and 8 zwitterions in rat adipose, bone, brain, gut, heart, kidney, liver, lung, muscle, pancreas, skin, spleen and thymus. These equations incorporate expressions for dissolution in tissue water and, partitioning into neutral lipids and neutral phospholipids. Additionally, associations with acidic phospholipids were incorporated for zwitterions with a highly basic functionality, or extracellular proteins for the other compound classes. The affinity for these cellular constituents was determined from blood cell data or plasma protein binding, respectively. These equations assume drugs are passively distributed and that processes are nonsaturating. Resultant Kpu predictions were more accurate when compared to published equations, with 84% as opposed to 61% of the predicted values agreeing with experimental values to within a factor of 3. This improvement was largely due to the incorporation of distribution processes related to drug ionisation, an issue that is not addressed in earlier equations. Such advancements in parameter prediction will assist WBPBPK modelling, where time, cost and labour requirements greatly deter its application. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases.

            Tissue-to-plasma water partition coefficients (Kpu's) form an integral part of whole body physiologically based pharmacokinetic (WBPBPK) models. This research aims to improve the predictability of Kpu values for moderate-to-strong bases (pK(a) > or = 7), by developing a mechanistic equation that accommodates the unique electrostatic interactions of such drugs with tissue acidic phospholipids, where the affinity of this interaction is readily estimated from drug blood cell binding data. Additional model constituents are drug partitioning into neutral lipids and neutral phospholipids, and drug dissolution in tissue water. Major assumptions of this equation are that electrostatic interactions predominate, drugs distribute passively, and non-saturating conditions prevail. Resultant Kpu predictions for 28 moderate-to-strong bases were significantly more accurate than published equations with 89%, compared to 45%, of the predictions being within a factor of three of experimental values in rat adipose, bone, gut, heart, kidney, liver, muscle, pancreas, skin, spleen and thymus. Predictions in rat brain and lung were less accurate probably due to the involvement of additional processes not incorporated within the equation. This overall improvement in prediction should facilitate the further application of WBPBPK modeling, where time, cost and labor requirements associated with experimentally determining Kpu's have, to a large extent, deterred its application. (c) 2005 Wiley-Liss, Inc. and
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach.

              Observational studies have documented that women take a variety of medications during pregnancy. It is well known that pregnancy can induce changes in the plasma concentrations of some drugs. The use of mechanistic-based approaches to drug interactions has significantly increased our ability to predict clinically significant drug interactions and improve clinical care. This same method can also be used to improve our understanding regarding the effect of pregnancy on pharmacokinetics of drugs. Limited studies suggest bioavailability of drugs is not altered during pregnancy. Increased plasma volume and protein binding changes can alter the apparent volume of distribution (Vd) of drugs. Through changes in Vd and clearance, pregnancy can cause increases or decreases in the terminal elimination half-life of drugs. Depending on whether a drug is excreted unchanged by the kidneys or which metabolic isoenzyme is involved in the metabolism of a drug can determine whether or not a change in dosage is needed during pregnancy. The renal excretion of unchanged drugs is increased during pregnancy. The metabolism of drugs catalysed by select cytochrome P450 (CYP) isoenzymes (i.e. CYP3A4, CYP2D6 and CYP2C9) and uridine diphosphate glucuronosyltransferase (UGT) isoenzymes (i.e. UGT1A4 and UGT2B7) are increased during pregnancy. Dosages of drugs predominantly metabolised by these isoenzymes or excreted by the kidneys unchanged may need to be increased during pregnancy in order to avoid loss of efficacy. In contrast, CYP1A2 and CYP2C19 activity is decreased during pregnancy, suggesting that dosage reductions may be needed to minimise potential toxicity of their substrates. There are limitations to the available data. This analysis is based primarily on observational studies, many including small numbers of women. For some isoenzymes, the effect of pregnancy on only one drug has been evaluated. The full-time course of pharmacokinetic changes during pregnancy is often not studied. The effect of pregnancy on transport proteins is unknown. Drugs eliminated by non-CYP or non-UGT pathways or multiple pathways will need to be evaluated individually. In conclusion, by evaluating the pharmacokinetic data of a variety of drugs during pregnancy and using a mechanistic-based approach, we can start to predict the effect of pregnancy for a large number of clinically used drugs. However, because of the limitations, more clinical, evidence-based studies are needed to fully elucidate the effects of pregnancy on the pharmacokinetics of drugs.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Clinical Pharmacokinetics
                Clin Pharmacokinet
                Springer Science and Business Media LLC
                0312-5963
                1179-1926
                June 2018
                September 18 2017
                June 2018
                : 57
                : 6
                : 749-768
                Article
                10.1007/s40262-017-0594-5
                28924743
                bae8a2d2-ee15-4948-b70f-142193f5675e
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article