52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene Expression and Physiological Changes of Different Populations of the Long-Lived Bivalve Arctica islandica under Low Oxygen Conditions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bivalve Arctica islandica is extremely long lived (>400 years) and can tolerate long periods of hypoxia and anoxia. European populations differ in maximum life spans (MLSP) from 40 years in the Baltic to >400 years around Iceland. Characteristic behavior of A. islandica involves phases of metabolic rate depression (MRD) during which the animals burry into the sediment for several days. During these phases the shell water oxygen concentrations reaches hypoxic to anoxic levels, which possibly support the long life span of some populations. We investigated gene regulation in A. islandica from a long-lived (MLSP 150 years) German Bight population and the short-lived Baltic Sea population, experimentally exposed to different oxygen levels. A new A. islandica transcriptome enabled the identification of genes important during hypoxia/anoxia events and, more generally, gene mining for putative stress response and (anti-) aging genes. Expression changes of a) antioxidant defense: Catalase, Glutathione peroxidase, manganese and copper-zinc Superoxide dismutase; b) oxygen sensing and general stress response: Hypoxia inducible factor alpha, Prolyl hydroxylase and Heat-shock protein 70; and c) anaerobic capacity: Malate dehydrogenase and Octopine dehydrogenase, related transcripts were investigated. Exposed to low oxygen, German Bight individuals suppressed transcription of all investigated genes, whereas Baltic Sea bivalves enhanced gene transcription under anoxic incubation (0 kPa) and, further, decreased these transcription levels again during 6 h of re-oxygenation. Hypoxic and anoxic exposure and subsequent re-oxygenation in Baltic Sea animals did not lead to increased protein oxidation or induction of apoptosis, emphasizing considerable hypoxia/re-oxygenation tolerance in this species. The data suggest that the energy saving effect of MRD may not be an attribute of Baltic Sea A. islandica chronically exposed to high environmental variability (oxygenation, temperature, salinity). Contrary, higher physiological flexibility and stress hardening may predispose these animals to perform a pronounced stress response at the expense of life span.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          SMART 4.0: towards genomic data integration.

          SMART (Simple Modular Architecture Research Tool) is a web tool (http://smart.embl.de/) for the identification and annotation of protein domains, and provides a platform for the comparative study of complex domain architectures in genes and proteins. The January 2004 release of SMART contains 685 protein domains. New developments in SMART are centred on the integration of data from completed metazoan genomes. SMART now uses predicted proteins from complete genomes in its source sequence databases, and integrates these with predictions of orthology. New visualization tools have been developed to allow analysis of gene intron-exon structure within the context of protein domain structure, and to align these displays to provide schematic comparisons of orthologous genes, or multiple transcripts from the same gene. Other improvements include the ability to query SMART by Gene Ontology terms, improved structure database searching and batch retrieval of multiple entries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A spectrophotometric method for determination of catalase activity in small tissue samples.

            A simple and rapid method for determination of catalase activity in small tissue samples is described. Using a new approach, we have exploited the peroxidatic function of catalase for the determination of enzyme activity. The method was based on the reaction of the enzyme with methanol in the presence of an optimal concentration of hydrogen peroxide. The formaldehyde produced was measured spectrophotometrically with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald) as a chromogen. With this method, a detection limit of 12.5 ng of purified catalase from bovine liver was possible, and it was successfully applied to microgram amounts of mouse liver and pancreatic islet homogenates. The catalase activity in liver was about 50 times higher than that in pancreatic islets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hormesis in aging.

              Hormesis in aging is represented by mild stress-induced stimulation of protective mechanisms in cells and organisms resulting in biologically beneficial effects. Single or multiple exposure to low doses of otherwise harmful agents, such as irradiation, food limitation, heat stress, hypergravity, reactive oxygen species and other free radicals have a variety of anti-aging and longevity-extending hormetic effects. Detailed molecular mechanisms that bring about the hormetic effects are being increasingly understood, and comprise a cascade of stress response and other pathways of maintenance and repair. Although the extent of immediate hormetic effects after exposure to a particular stress may only be moderate, the chain of events following initial hormesis leads to biologically amplified effects that are much larger, synergistic and pleiotropic. A consequence of hormetic amplification is an increase in the homeodynamic space of a living system in terms of increased defence capacity and reduced load of damaged macromolecules. Hormetic strengthening of the homeodynamic space provides wider margins for metabolic fluctuation, stress tolerance, adaptation and survival. Hormesis thus counter-balances the progressive shrinkage of the homeodynamic space, which is the ultimate cause of aging, diseases and death. Healthy aging may be achieved by hormesis through mild and periodic, but not severe or chronic, physical and mental challenges, and by the use of nutritional hormesis incorporating mild stress-inducing molecules called hormetins. The established scientific foundations of hormesis are ready to pave the way for new and effective approaches in aging research and intervention.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                19 September 2012
                : 7
                : 9
                : e44621
                Affiliations
                [1 ]Cellbiology, Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Kiel, Germany
                [2 ]Functional Ecology, Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany
                [3 ]Institute of Human Nutrition and Foodscience, Christian-Albrechts University Kiel, Kiel, Germany
                Universidade de Brasília, Brazil
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EP DA JS WW. Performed the experiments: EP JS WW AW IE GR. Analyzed the data: EP WW HG JS DA EW IE GR LK PR. Contributed reagents/materials/analysis tools: LK PR DA GR SS. Wrote the paper: EP WW HG DA GR AW JS PR.

                Article
                PONE-D-12-07847
                10.1371/journal.pone.0044621
                3446923
                23028566
                bae640c2-b812-4f78-85a2-8faf4ec7f864
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 March 2012
                : 6 August 2012
                Page count
                Pages: 14
                Funding
                This research was supported by the Medical Faculty Kiel, the DFG clusters of Excellence “The Future Ocean” and “Inflammation at Interfaces”, and the German Research Foundation (DFG) priority programme 1399 “Host-parasite co-evolution”, Genomics Analysis platform. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Metabolism
                Oxygen Metabolism
                Biophysics
                Nucleic Acids
                RNA
                Ecology
                Ecophysiology
                Marine Ecology
                Evolutionary Biology
                Aging
                Comparative Genomics
                Genomics
                Functional Genomics
                Marine Biology
                Marine Ecology
                Molecular Cell Biology
                Nucleic Acids
                RNA
                Gene Expression

                Uncategorized
                Uncategorized

                Comments

                Comment on this article