9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Decision Making in Structure-Based Drug Discovery: Visual Inspection of Docking Results

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening.

          Glide's ability to identify active compounds in a database screen is characterized by applying Glide to a diverse set of nine protein receptors. In many cases, two, or even three, protein sites are employed to probe the sensitivity of the results to the site geometry. To make the database screens as realistic as possible, the screens use sets of "druglike" decoy ligands that have been selected to be representative of what we believe is likely to be found in the compound collection of a pharmaceutical or biotechnology company. Results are presented for releases 1.8, 2.0, and 2.5 of Glide. The comparisons show that average measures for both "early" and "global" enrichment for Glide 2.5 are 3 times higher than for Glide 1.8 and more than 2 times higher than for Glide 2.0 because of better results for the least well-handled screens. This improvement in enrichment stems largely from the better balance of the more widely parametrized GlideScore 2.5 function and the inclusion of terms that penalize ligand-protein interactions that violate established principles of physical chemistry, particularly as it concerns the exposure to solvent of charged protein and ligand groups. Comparisons to results for the thymidine kinase and estrogen receptors published by Rognan and co-workers (J. Med. Chem. 2000, 43, 4759-4767) show that Glide 2.5 performs better than GOLD 1.1, FlexX 1.8, or DOCK 4.01.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ligand docking and binding site analysis with PyMOL and Autodock/Vina

            Docking of small molecule compounds into the binding site of a receptor and estimating the binding affinity of the complex is an important part of the structure-based drug design process. For a thorough understanding of the structural principles that determine the strength of a protein/ligand complex both, an accurate and fast docking protocol and the ability to visualize binding geometries and interactions are mandatory. Here we present an interface between the popular molecular graphics system PyMOL and the molecular docking suites Autodock and Vina and demonstrate how the combination of docking and visualization can aid structure-based drug design efforts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design

              Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) are arguably very popular methods for binding free energy prediction since they are more accurate than most scoring functions of molecular docking and less computationally demanding than alchemical free energy methods. MM/PBSA and MM/GBSA have been widely used in biomolecular studies such as protein folding, protein-ligand binding, protein-protein interaction, etc. In this review, methods to adjust the polar solvation energy and to improve the performance of MM/PBSA and MM/GBSA calculations are reviewed and discussed. The latest applications of MM/GBSA and MM/PBSA in drug design are also presented. This review intends to provide readers with guidance for practically applying MM/PBSA and MM/GBSA in drug design and related research fields.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Medicinal Chemistry
                J. Med. Chem.
                American Chemical Society (ACS)
                0022-2623
                1520-4804
                March 11 2021
                February 22 2021
                March 11 2021
                : 64
                : 5
                : 2489-2500
                Affiliations
                [1 ]Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
                Article
                10.1021/acs.jmedchem.0c02227
                33617246
                bad25efc-3c7b-4b2c-9075-587af7d35b08
                © 2021
                History

                Comments

                Comment on this article