Channel shear connectors are known as an appropriate alternative for common shear connectors due to having a lower manufacturing cost and an easier installation process. The behavior of channel connectors is generally determined through conducting experiments. However, these experiments are not only costly but also time-consuming. Moreover, the impact of other parameters cannot be easily seen in the behavior of the connectors. This paper aims to investigate the application of a hybrid artificial neural network–particle swarm optimization (ANN-PSO) model in the behavior prediction of channel connectors embedded in normal and high-strength concrete (HSC). To generate the required data, an experimental project was conducted. Dimensions of the channel connectors and the compressive strength of concrete were adopted as the inputs of the model, and load and slip were predicted as the outputs. To evaluate the ANN-PSO model, an ANN model was also developed and tuned by a backpropagation (BP) learning algorithm. The results of the paper revealed that an ANN model could properly predict the behavior of channel connectors and eliminate the need for conducting costly experiments to some extent. In addition, in this case, the ANN-PSO model showed better performance than the ANN-BP model by resulting in superior performance indices.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.