21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metabolic Messengers: ceramides

      , ,
      Nature Metabolism
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ceramides are products of metabolism that accumulate in individuals with obesity or dyslipidaemia and alter cellular processes in response to fuel surplus. Their actions, when prolonged, elicit the tissue dysfunction that underlies diabetes and heart disease. Here, we review the history of research on these enigmatic molecules, exploring their discovery and mechanisms of action, the evolutionary pressures that have given them their unique attributes and the potential of ceramide-reduction therapies as treatments for cardiometabolic disease.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Lipotoxicity and the gut-liver axis in NASH pathogenesis.

          The pathogenesis of non-alcoholic fatty liver disease, particularly the mechanisms whereby a minority of patients develop a more severe phenotype characterised by hepatocellular damage, inflammation, and fibrosis is still incompletely understood. Herein, we discuss two pivotal aspects of the pathogenesis of NASH. We first analyse the initial mechanisms responsible for hepatocellular damage and inflammation, which derive from the toxic effects of excess lipids. Accumulating data indicate that the total amount of triglycerides stored in hepatocytes is not the major determinant of lipotoxicity, and that specific lipid classes act as damaging agents on liver cells. In particular, the role of free fatty acids such as palmitic acid, cholesterol, lysophosphatidylcholine and ceramides has recently emerged. These lipotoxic agents affect the cell behaviour via multiple mechanisms, including activation of signalling cascades and death receptors, endoplasmic reticulum stress, modification of mitochondrial function, and oxidative stress. In the second part of this review, the cellular and molecular players involved in the cross-talk between the gut and the liver are considered. These include modifications to the microbiota, which provide signals through the intestine and bacterial products, as well as hormones produced in the bowel that affect metabolism at different levels including the liver. Finally, the activation of nuclear receptors by bile acids is analysed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective versus total insulin resistance: a pathogenic paradox.

            Mice with type 2 diabetes manifest selective hepatic insulin resistance: insulin fails to suppress gluconeogenesis but continues to activate lipogenesis, producing the deadly combination of hyperglycemia and hypertriglyceridemia. In this issue of Cell Metabolism, Biddinger et al. (2008) show that mice with total hepatic insulin resistance exhibit hyperglycemia without hypertriglyceridemia-a state paradoxically less severe than selective insulin resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Programmed cell death induced by ceramide.

              Sphingomyelin hydrolysis and ceramide generation have been implicated in a signal transduction pathway that mediates the effects of tumor necrosis factor-alpha (TNF-alpha) and other agents on cell growth and differentiation. In many leukemic cells, TNF-alpha causes DNA fragmentation, which leads to programmed cell death (apoptosis). C2-ceramide (0.6 to 5 microM), a synthetic cell-permeable ceramide analog, induced internucleosomal DNA fragmentation, which was inhibited by zinc ion. Other amphiphilic lipids failed to induce apoptosis. The closely related C2-dihydroceramide was also ineffective, which suggests a critical role for the sphingolipid double bond. The effects of C2-ceramide on DNA fragmentation were prevented by the protein kinase C activator phorbol 12-myristate 13-acetate, which suggests the existence of two opposing intracellular pathways in the regulation of apoptosis.
                Bookmark

                Author and article information

                Journal
                Nature Metabolism
                Nat Metab
                Springer Science and Business Media LLC
                2522-5812
                November 2019
                October 24 2019
                November 2019
                : 1
                : 11
                : 1051-1058
                Article
                10.1038/s42255-019-0134-8
                7549391
                32694860
                bab5784a-99c4-4a49-95de-84a2850af95b
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article