26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Werner syndrome helicase activity is essential in maintaining fragile site stability

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          WRN is a member of the RecQ family of DNA helicases implicated in the resolution of DNA structures leading to the stall of replication forks. Fragile sites have been proposed to be DNA regions particularly sensitive to replicative stress. Here, we establish that WRN is a key regulator of fragile site stability. We demonstrate that in response to mild doses of aphidicolin, WRN is efficiently relocalized in nuclear foci in replicating cells and that WRN deficiency is associated with accumulation of gaps and breaks at common fragile sites even under unperturbed conditions. By expressing WRN isoforms impaired in either helicase or exonuclease activity in defective cells, we identified WRN helicase activity as the function required for maintaining the stability of fragile sites. Finally, we find that WRN stabilizes fragile sites acting in a common pathway with the ataxia telangiectasia and Rad3 related replication checkpoint. These findings provide the first evidence of a crucial role for a helicase in protecting cells against chromosome breakage at normally occurring replication fork stalling sites.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions.

          DNA damage checkpoint genes, such as p53, are frequently mutated in human cancer, but the selective pressure for their inactivation remains elusive. We analysed a panel of human lung hyperplasias, all of which retained wild-type p53 genes and had no signs of gross chromosomal instability, and found signs of a DNA damage response, including histone H2AX and Chk2 phosphorylation, p53 accumulation, focal staining of p53 binding protein 1 (53BP1) and apoptosis. Progression to carcinoma was associated with p53 or 53BP1 inactivation and decreased apoptosis. A DNA damage response was also observed in dysplastic nevi and in human skin xenografts, in which hyperplasia was induced by overexpression of growth factors. Both lung and experimentally-induced skin hyperplasias showed allelic imbalance at loci that are prone to DNA double-strand break formation when DNA replication is compromised (common fragile sites). We propose that, from its earliest stages, cancer development is associated with DNA replication stress, which leads to DNA double-strand breaks, genomic instability and selective pressure for p53 mutations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defective telomere lagging strand synthesis in cells lacking WRN helicase activity.

            Cells from Werner syndrome patients are characterized by slow growth rates, premature senescence, accelerated telomere shortening rates, and genome instability. The syndrome is caused by the loss of the RecQ helicase WRN, but the underlying molecular mechanism is unclear. Here we report that cells lacking WRN exhibit deletion of telomeres from single sister chromatids. Only telomeres replicated by lagging strand synthesis were affected, and prevention of loss of individual telomeres was dependent on the helicase activity of WRN. Telomere loss could be counteracted by telomerase activity. We propose that WRN is necessary for efficient replication of G-rich telomeric DNA, preventing telomere dysfunction and consequent genomic instability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Bloom's and Werner's syndrome proteins are DNA structure-specific helicases.

              BLM and WRN, the products of the Bloom's and Werner's syndrome genes, are members of the RecQ family of DNA helicases. Although both have been shown previously to unwind simple, partial duplex DNA substrates with 3'-->5' polarity, little is known about the structural features of DNA that determine the substrate specificities of these enzymes. We have compared the substrate specificities of the BLM and WRN proteins using a variety of partial duplex DNA molecules, which are based upon a common core nucleotide sequence. We show that neither BLM nor WRN is capable of unwinding duplex DNA from a blunt-ended terminus or from an internal nick. However, both enzymes efficiently unwind the same blunt-ended duplex containing a centrally located 12 nt single-stranded 'bubble', as well as a synthetic X-structure (a model for the Holliday junction recombination intermediate) in which each 'arm' of the 4-way junction is blunt-ended. Surprisingly, a 3'-tailed duplex, a standard substrate for 3'-->5' helicases, is unwound much less efficiently by BLM and WRN than are the bubble and X-structure substrates. These data show conclusively that a single-stranded 3'-tail is not a structural requirement for unwinding of standard B-form DNA by these helicases. BLM and WRN also both unwind a variety of different forms of G-quadruplex DNA, a structure that can form at guanine-rich sequences present at several genomic loci. Our data indicate that BLM and WRN are atypical helicases that are highly DNA structure specific and have similar substrate specificities. We interpret these data in the light of the genomic instability and hyper-recombination characteristics of cells from individuals with Bloom's or Werner's syndrome.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                28 January 2008
                : 180
                : 2
                : 305-314
                Affiliations
                Section of Experimental and Computational Carcinogenesis, Istituto Superiore di Sanità, 299–00161 Rome, Italy
                Author notes

                Correspondence to A. Franchitto: annapaola.franchitto@ 123456iss.it

                Article
                200705126
                10.1083/jcb.200705126
                2213598
                18209099
                ba8d3048-27ee-4d02-8922-f44cfcc3c3cb
                Copyright © 2008, The Rockefeller University Press
                History
                : 21 May 2007
                : 20 December 2007
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article