14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Protein kinase Cα-dependent increase in Ca2+-independent phospholipase A2 in membranes and arachidonic acid liberation in zymosan-stimulated macrophage-like P388D1 cells

      , , , , ,
      Biochemical Pharmacology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We previously reported that zymosan-stimulated, protein kinase C (PKC)-dependent arachidonic acid liberation occurs with association of Ca2+-independent phospholipase A2 (iPLA2) with the membranes of macrophage-like P388D1 cells. In the present study, the possible involvement of PKC isoforms (alpha, beta, delta, and epsilon) on the increase in iPLA2 was examined. Stimulation of P388D1 cells with zymosan induced increases in iPLA2 activity and protein in the membranes and liberation of arachidonic acid. In the stimulated cells, PKCalpha, PKCdelta, and PKCepsilon, but not PKCbeta, were increased in the membranes. The zymosan-induced increase in iPLA2 activity was suppressed by pretreatment with 4beta-phorbol 12-myristate 13-acetate for 10 hr, by which PKCalpha and PKCdelta, but not PKCbeta and PKCepsilon, were depleted, and by Gö6976, a PKCalpha inhibitor, but not rottlerin, a PKCdelta inhibitor. The zymosan-induced release of arachidonic acid was also reduced by the PKC depletion and Gö6976. However, stimulation with 4beta-phorbol 12-myristate 13-acetate alone did not increase iPLA2 activity in the membranes. Furthermore, the depletion of intracellular Ca2+ also impaired the zymosan-induced increase in iPLA2 activity in the membranes. However, no increase in iPLA2 activity was observed upon stimulation with Ca2+-mobilizing agents (ionomycin or thapsigargin). Cytochalasin D, an inhibitor of actin polymerization, suppressed the zymosan-induced increases in iPLA2 activity and protein in the membranes and the release of arachidonic acid. These results suggest that zymosan stimulates an increase in iPLA2 in the membranes of P388D1 cells probably through activation of PKCalpha in concert with cytochalasin D-sensitive events.

          Related collections

          Author and article information

          Journal
          Biochemical Pharmacology
          Biochemical Pharmacology
          Elsevier BV
          00062952
          June 2002
          June 2002
          : 63
          : 11
          : 1969-1977
          Article
          10.1016/S0006-2952(02)00988-7
          12093473
          ba3f29db-b93b-4575-80dd-6805eb1a0405
          © 2002

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article