10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants

      ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nowadays, the most significant consequence of climate change is drought stress. Drought is one of the important, alarming, and hazardous abiotic stresses responsible for the alterations in soil environment affecting soil organisms, including microorganisms and plants. It alters the activity and functional composition of soil microorganisms that are responsible for crucial ecosystem functions and services. These stress conditions decrease microbial abundance, disturb microbial structure, decline microbial activity, including enzyme production (e.g., such as oxidoreductases, hydrolases, dehydrogenase, catalase, urease, phosphatases, β-glucosidase) and nutrient cycling, leading to a decrease in soil fertility followed by lower plant productivity and loss in economy. Interestingly, the negative effects of drought on soil can be minimized by adding organic substances such as compost, sewage slugs, or municipal solid waste that increases the activity of soil enzymes. Drought directly affects plant morphology, anatomy, physiology, and biochemistry. Its effect on plants can also be observed by changes at the transcriptomic and metabolomic levels. However, in plants, it can be mitigated by rhizosphere microbial communities, especially by plant growth-promoting bacteria (PGPB) and fungi (PGPF) that adapt their structural and functional compositions to water scarcity. This review was undertaken to discuss the impacts of drought stress on soil microbial community abundance, structure and activity, and plant growth and development, including the role of soil microorganisms in this process. Microbial activity in the soil environment was considered in terms of soil enzyme activities, pools, fluxes, and processes of terrestrial carbon (C) and nitrogen (N) cycles. A deep understanding of many aspects is necessary to explore the impacts of these extreme climate change events. We also focus on addressing the possible ways such as genome editing, molecular analysis (metagenomics, transcriptomics, and metabolomics) towards finding better solutions for mitigating drought effects and managing agricultural practices under harsh condition in a profitable manner.

          Related collections

          Most cited references182

          • Record: found
          • Abstract: found
          • Article: not found

          Reactive oxygen species: metabolism, oxidative stress, and signal transduction.

          Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Abiotic Stress Signaling and Responses in Plants.

            As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response.

                Bookmark

                Author and article information

                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                January 2022
                January 13 2022
                : 12
                : 1
                : 189
                Article
                10.3390/agronomy12010189
                ba2eaa9c-191a-4626-a895-b7cf07e784dc
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article