35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The STAR RNA binding proteins GLD-1, QKI, SAM68 and SLM-2 bind bipartite RNA motifs

      research-article
      1 , 2 , 1 , 3 ,
      BMC Molecular Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          SAM68, SAM68-like mammalian protein 1 (SLM-1) and 2 (SLM-2) are members of the K homology (KH) and STAR (signal transduction activator of RNA metabolism) protein family. The function of these RNA binding proteins has been difficult to elucidate mainly because of lack of genetic data providing insights about their physiological RNA targets. In comparison, genetic studies in mice and C. elegans have provided evidence as to the physiological mRNA targets of QUAKING and GLD-1 proteins, two other members of the STAR protein family. The GLD-1 binding site is defined as a hexanucleotide sequence (NACUCA) that is found in many, but not all, physiological GLD-1 mRNA targets. Previously by using Systematic Evolution of Ligands by EXponential enrichment (SELEX), we defined the QUAKING binding site as a hexanucleotide sequence with an additional half-site (UAAY). This sequence was identified in QKI mRNA targets including the mRNAs for myelin basic proteins.

          Results

          Herein we report using SELEX the identification of the SLM-2 RNA binding site as direct U(U/A)AA repeats. The bipartite nature of the consensus sequence was essential for SLM-2 high affinity RNA binding. The identification of a bipartite mRNA binding site for QKI and now SLM-2 prompted us to determine whether SAM68 and GLD-1 also bind bipartite direct repeats. Indeed SAM68 bound the SLM-2 consensus and required both U(U/A)AA motifs. We also confirmed that GLD-1 also binds a bipartite RNA sequence in vitro with a short RNA sequence from its tra-2 physiological mRNA target.

          Conclusion

          These data demonstrate that the STAR proteins QKI, GLD-1, SAM68 and SLM-2 recognize RNA with direct repeats as bipartite motifs. This information should help identify binding sites within physiological RNA targets.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase.

          L Gold, C Tuerk (1990)
          High-affinity nucleic acid ligands for a protein were isolated by a procedure that depends on alternate cycles of ligand selection from pools of variant sequences and amplification of the bound species. Multiple rounds exponentially enrich the population for the highest affinity species that can be clonally isolated and characterized. In particular one eight-base region of an RNA that interacts with the T4 DNA polymerase was chosen and randomized. Two different sequences were selected by this procedure from the calculated pool of 65,536 species. One is the wild-type sequence found in the bacteriophage mRNA; one is varied from wild type at four positions. The binding constants of these two RNA's to T4 DNA polymerase are equivalent. These protocols with minimal modification can yield high-affinity ligands for any protein that binds nucleic acids as part of its function; high-affinity ligands could conceivably be developed for any target molecule.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function.

            Loss of fragile X mental retardation protein (FMRP) function causes the fragile X mental retardation syndrome. FMRP harbors three RNA binding domains, associates with polysomes, and is thought to regulate mRNA translation and/or localization, but the RNAs to which it binds are unknown. We have used RNA selection to demonstrate that the FMRP RGG box binds intramolecular G quartets. This data allowed us to identify mRNAs encoding proteins involved in synaptic or developmental neurobiology that harbor FMRP binding elements. The majority of these mRNAs have an altered polysome association in fragile X patient cells. These data demonstrate that G quartets serve as physiologically relevant targets for FMRP and identify mRNAs whose dysregulation may underlie human mental retardation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure and function of KH domains.

              The hnRNP K homology (KH) domain was first identified in the protein human heterogeneous nuclear ribonucleoprotein K (hnRNP K) 14 years ago. Since then, KH domains have been identified as nucleic acid recognition motifs in proteins that perform a wide range of cellular functions. KH domains bind RNA or ssDNA, and are found in proteins associated with transcriptional and translational regulation, along with other cellular processes. Several diseases, e.g. fragile X mental retardation syndrome and paraneoplastic disease, are associated with the loss of function of a particular KH domain. Here we discuss the progress made towards understanding both general and specific features of the molecular recognition of nucleic acids by KH domains. The typical binding surface of KH domains is a cleft that is versatile but that can typically accommodate only four unpaired bases. Van der Waals forces and hydrophobic interactions and, to a lesser extent, electrostatic interactions, contribute to the nucleic acid binding affinity. 'Augmented' KH domains or multiple copies of KH domains within a protein are two strategies that are used to achieve greater affinity and specificity of nucleic acid binding. Isolated KH domains have been seen to crystallize as monomers, dimers and tetramers, but no published data support the formation of noncovalent higher-order oligomers by KH domains in solution. Much attention has been given in the literature to a conserved hydrophobic residue (typically Ile or Leu) that is present in most KH domains. The interest derives from the observation that an individual with this Ile mutated to Asn, in the KH2 domain of fragile X mental retardation protein, exhibits a particularly severe form of the syndrome. The structural effects of this mutation in the fragile X mental retardation protein KH2 domain have recently been reported. We discuss the use of analogous point mutations at this position in other KH domains to dissect both structure and function.
                Bookmark

                Author and article information

                Journal
                BMC Mol Biol
                BMC Molecular Biology
                BioMed Central
                1471-2199
                2009
                20 May 2009
                : 10
                : 47
                Affiliations
                [1 ]Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Departments of Oncology and Medicine, McGill University, Montréal, Québec, Canada, H3T 1E2
                [2 ]Current address: Schering-Plough Canada Inc, Kirkland QC, H9H 4M7
                [3 ]Segal Cancer Centre, 3755 Côte Ste-Catherine Road, Montréal, Québec, Canada H3T 1E2
                Article
                1471-2199-10-47
                10.1186/1471-2199-10-47
                2697983
                19457263
                ba1a4df8-486a-45d2-b94d-669ac71d743d
                Copyright © 2009 Galarneau and Richard; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 January 2009
                : 20 May 2009
                Categories
                Research Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article