36
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to this journal, click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Assessment of seasonality in soil-transmitted helminth infections across 14 schools in Jimma Town, Ethiopia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Up to date, the frequency of preventive chemotherapy based on the prevalence is the only strategy in the control programmes of soil-transmitted helminths (STHs). However, prevalence of STHs may be affected by climatic and/or seasonal changes, particularly when these are important determinants of transmission of STH infections. Our objective was to describe the prevalence and infection intensity and seasonal variation (mainly dry vs rainy season) of any STHs among school age children.

          Methods

          Assessment of infection intensity and prevalence of STHs was carried out during dry season (February-March, 2012) and end of rainy season (September-October, 2012) across 14 primary schools in Jimma Town, Jimma, Ethiopia. A total of 1,680 school children (840 in each season) were included. All stool samples were processed by the McMaster egg counting method. Odds of infection and intensity was performed to assess any differences in prevalence and infection intensity between the schools and the two seasons. The pooled odd ratio and their 95% confidence interval was also computed and presented using the "metafor" package of the statistical software R. The level of significance was declared at p < 0.05.

          Results

          Infections with any STH were observed in 824/1,680 (49.0%) subjects. T. trichiura was the most prevalent (35.5%), followed by A. lumbricoides (23.4%) and hookworms (9.9%). Among the schools there were a huge variation in prevalence, ranging from 16.7% to 68.3% for any STH, 6.7% to 39.2% for A. lumbricoides, 10.8% to 55.0% for T. trichiura and 0 % to 28.3% for hookworms. A significant difference in prevalence (for T. trichiura) and in infection intensity (for A. lumbricoides and T. trichiura) across seasons was observed. Generally, STH infections were more prevalent in the dry season (52.4%) compared to the rainy season (45.7%) and as well intensity of all three STH infections was higher in the dry season.

          Conclusion

          Our data suggested that there were huge variation in STH prevalence among schools and a significant difference in infection intensity and prevalence across seasons. This in turn might limits how national governments and international organizations define and target resources to combat the disease burden due to STH infection. Long term studies are needed to confirm the influence of seasonal factors and related ecological, environmental and socio-economic factors.

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The global limits and population at risk of soil-transmitted helminth infections in 2010

          Background Understanding the global limits of transmission of soil-transmitted helminth (STH) species is essential for quantifying the population at-risk and the burden of disease. This paper aims to define these limits on the basis of environmental and socioeconomic factors, and additionally seeks to investigate the effects of urbanisation and economic development on STH transmission, and estimate numbers at-risk of infection with Ascaris lumbricoides, Trichuris trichiura and hookworm in 2010. Methods A total of 4,840 geo-referenced estimates of infection prevalence were abstracted from the Global Atlas of Helminth Infection and related to a range of environmental factors to delineate the biological limits of transmission. The relationship between STH transmission and urbanisation and economic development was investigated using high resolution population surfaces and country-level socioeconomic indicators, respectively. Based on the identified limits, the global population at risk of STH transmission in 2010 was estimated. Results High and low land surface temperature and extremely arid environments were found to limit STH transmission, with differential limits identified for each species. There was evidence that the prevalence of A. lumbricoides and of T. trichiura infection was statistically greater in peri-urban areas compared to urban and rural areas, whilst the prevalence of hookworm was highest in rural areas. At national levels, no clear socioeconomic correlates of transmission were identified, with the exception that little or no infection was observed for countries with a per capita gross domestic product greater than US$ 20,000. Globally in 2010, an estimated 5.3 billion people, including 1.0 billion school-aged children, lived in areas stable for transmission of at least one STH species, with 69% of these individuals living in Asia. A further 143 million (31.1 million school-aged children) lived in areas of unstable transmission for at least one STH species. Conclusions These limits provide the most contemporary, plausible representation of the extent of STH risk globally, and provide an essential basis for estimating the global disease burden due to STH infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human hookworm infection in the 21st century.

            The scientific study of human hookworm infection began at the dawn of the twentieth century. In recent years, there have been dramatic improvements in our understanding of many aspects of this globally widespread parasite. This chapter reviews recent advances in our understanding in the biology, immunology, epidemiology, public health significance and control of hookworm, and to look forward to the study of this important parasite in the 21st century. Advances in molecular biology has lead to the identification of a variety of new molecules from hookworms, which have importance either in the molecular pathogenesis of hookworm infection or in the host-parasite relationship; some are also promising vaccine targets. At present, relatively little is known about the immune responses to hookworm infection, although it has recently been speculated that hookworm and other helminths may modulate specific immune responses to other pathogens and vaccines. Our epidemiological understanding of hookworm has improved through the development of mathematical models of transmission dynamics, which coupled with decades of field research across multiple epidemiological settings, have shown that certain population characteristics can now be recognised as common to the epidemiology, population biology and control of hookworm and other helminth species. Recent recognition of the subtle, but significant, impact of hookworm on health and education, together with the simplicity, safety, low cost and efficacy of chemotherapy has spurred international efforts to control the morbidity due to infection. Large-scale treatment programmes are currently underway, ideally supported by health education and integrated with the provision of improved water and sanitation. There are also on-going efforts to develop novel anthelmintic drugs and anti-hookworm vaccines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Comparison of the Sensitivity and Fecal Egg Counts of the McMaster Egg Counting and Kato-Katz Thick Smear Methods for Soil-Transmitted Helminths

              Introduction Infection with soil-transmitted helminths (STH), including Ascaris lumbricoides, Trichuris trichiura and hookworm (Ancylostoma duodenale and Necator americanus) are of major importance for public health in tropical and subtropical countries [1], [2]. Current approaches proposed for controlling STH infections entail periodic large-scale administration of anthelmintic drugs, particularly targeting school-aged children [3], [4]. Since such large-scale interventions are likely to intensify as more attention is given to these neglected tropical diseases [5], monitoring drug efficacy will assume increasing importance for assessment of drug efficacy [6] and for detection of the emergence of resistance [7], [8]. A weakness of published studies reporting anthelmintic efficacy in human trials has been the focus on qualitative diagnosis of infections (presence/absence of STH eggs in stool) after treatment, that is, on the cure rate. Quantitative studies, reporting the reductions in the number of eggs excreted are published more rarely (fecal egg count reduction (FECR)) [9], yet are likely to provide the best summary measure for assessment of anthelmintic efficacy in large-scale treatment programs [10]. Although this implies the need for methods to accurately quantify egg excretion levels, studies where more than one coprological method based on fecal egg counts (FEC) has been used, are scarce. In addition, little is known about the variability in qualitative and quantitative diagnosis by these methods between different laboratories [11] or about the accuracy of the methods for estimating drug efficacies in monitoring programs. To date, the Kato-Katz thick smear method (Kato-Katz) is the diagnostic method recommended by the World Health Organization (WHO) for the quantification of STH eggs in human stool [12], because of its simple format and ease-of-use in the field. The chief limitation of the Kato-Katz method, however, arises when it is used with the objective of simultaneous assessment of STH in fecal samples from subjects with multiple species infections. This is because helminth eggs of different species of helminths appear at different time intervals (clearing times). In addition, hookworm eggs rapidly disappear in cleared slides, resulting in false negative test results if the interval between preparation and examination of the slides is too long (>30 min). These properties have impeded standardization of the Kato-Katz method in large-scale studies at different study sites [13]–[15]. Moreover, quantification of the intensity of egg excretion is based on a fixed volume of feces, rather than the mass of feces examined. Its quantitative performance is, therefore, questionable, as the intensity of eggs excreted is expressed as the number of eggs per gram of stool (EPG) [16], and the density of feces can vary. This potential bias in the value of FEC is likely to be important in programs monitoring drug efficacy by the Kato-Katz, where it may introduce additional variation in the results of FECR and broaden the confidence levels of the resulting statistical parameters. A recent study in non-human primates, demonstrated that the McMaster egg counting method (McMaster) holds promise for the assessment of the efficacy of anthelmintics by FECR [17], as it provided accurate estimates of FEC, and was very easy to use, making it particularly suitable for use in poorly equipped and often short-staffed laboratories. However, despite the fact that McMaster is the method of choice for efficacy monitoring programs in veterinary medicine [18], its performance for the detection and enumeration of STH eggs in human public health remains unknown. Therefore, a multinational study was conducted to evaluate the relative performance of the McMaster and Kato-Katz methods for monitoring drug efficacy in STH in humans. To this end, these methods were compared for both qualitative and quantitative detection of STH in human populations in Brazil, Cameroon, India, Tanzania and Vietnam. The three specific objectives of the current study were (i) to assess the consistency of the performance of these two methods in trials conducted in these different countries located in three continents; (ii) to validate the fixed multiplication factor employed in the Kato-Katz method; and (iii) to assess the accuracy of both methods for estimating drug efficacies based on FECR. Methods Ethics statement The overall protocol of the study was approved by the ethics committee of the Faculty of Medicine, Ghent University (Nr B67020084254), followed by a separate local ethical approval for each study site. For Brazil, approval was obtained from the institutional review board from Centro de Pesquisas René Rachou (Nr 21/2008), for Cameroon from the national ethics committee (Nr 072/CNE/DNM08), for India from the institutional review board of the Christian Medical College (Nr 6541), for Tanzania (Nr 20) from the Zanzibar Health Research Council and the Ministry of Health and Social Welfare, for Vietnam by the Ministry of Health of Vietnam. All subjects included in the study, or the parents in the case of school-aged children, signed an informed consent form. The clinical trial in this study was registered under the ClinicalTrials.gov identifier NCT01087099. Study sites and population The study was undertaken in five countries across Africa (Cameroon, Tanzania), Asia (India, Vietnam) and South America (Brazil). For Brazil, Cameroon, Tanzania, and Vietnam, the subjects involved also participated in a multinational trial of the efficacy of a single-dose albendazole (400 mg) against STH infections, which has been presented elsewhere [10]. It is important to note that here we do not make comparison between countries as such, but rather between five distinct trials conducted in five countries in geographically contrasting regions of the world, and reference to country is only for the purpose of distinguishing between specific trials. For this multinational efficacy trial, only subjects meeting the required criteria were included: attending school, aged of 4–18 years, not experiencing a severe concurrent medical condition or diarrhea at time of first sampling. For the trial conducted in India, stool samples of patients presented at the Christian Medical College hospital in August 2009 were included. A subset of at least 100 subjects (first screened) from each site was included in the analysis. This sample size was based on available prevalence data [19]–[23], and was sufficient in size to enable analysis by logistic regression modeling (10 infected subjects per predictor included in the model) [24]. Parasitological methods All stool samples were processed by the McMaster and the Kato-Katz methods as described below. For each stool sample, both methods were applied on the same day by experienced laboratory technicians blinded to any preceding test results. McMaster The McMaster method was based on the modified McMaster described by the Ministry of Agriculture, Fisheries, and Food (1986) [25]. Two grams of stool were suspended in 30 ml of saturated salt solution at room temperature (density ∼1.2, prepared by adding NaCl to 5 l of warm distilled water (40–50°C) until no more salt went into solution and the excess settled on the bottom of the container). The fecal suspension was poured three times through a wire mesh (aperture of 250 µm) to remove large debris. Then, 0.5 ml aliquots were added to each of the two chambers of a McMaster slide (http://www.mcmaster.co.za). Both chambers were examined under a light microscope using a 100x magnification and the FEC, expressed as EPG for each helminth species, were obtained by multiplying the total number of eggs by 50. A tutorial for performing the McMaster is made available at http://www.vetparasitology.ugent.be/page30/page30.html. Kato-Katz The Kato-Katz thick smears were prepared as described by WHO (1991) [12] on microscope slides using a square template with a hole diameter of 6 mm and depth of 1.5 mm, which is assumed to sample 41.7 mg of feces. All samples were examined within 30–60 min for the presence of hookworm and re-examined after ∼2 hours for the remaining STH eggs. The number of helminth eggs was counted on a per species basis and multiplied by 24 to obtain the FEC in units of EPG. In addition, in Tanzania and Cameroon, the validity of the multiplication factor was investigated by weighing the mass of feces examined, and then by comparing FEC based on the fixed multiplication factor of 24 with those based on a multiplication factor adjusted for the actual weight of the amount of feces examined. To this end, microscope slides were weighed (scale precision of 0.01 g) individually, without and with their aliquot of stool. The multiplication factor adjusted for the mass of feces examined was therefore 1 over the mass of the feces examined in grams (mass slide with feces – mass slide without feces). Statistical analysis As described below both diagnostic methods were compared qualitatively (sensitivity and negative predictive value (NPV)) and quantitatively (FEC) for each of the three STH species. In addition, the validity of the fixed multiplication factor for the Kato-Katz was examined. Finally, the accuracy of both methods for estimating drug efficacy by means of FECR was assessed. Both the qualitative and quantitative comparisons for each of the three STH separately were based only on subjects meeting the following inclusion criteria: (i) excreting STH eggs and (ii) originating from a trial were a minimal of 30 infected subjects were detected at the initial survey. The number of subjects enrolled, the occurrence of STH and the number of subjects included for this qualitative and quantitative comparison are shown in Figure 1. 10.1371/journal.pntd.0001201.g001 Figure 1 The number of subjects involved in the statistical analysis for agreement in test results. Qualitative agreement Sensitivity was calculated for each method, using the combined results of both methods as the diagnostic ‘gold’ standard. Therefore, the specificity of both methods was set at 100%, as indicated by the morphology of the eggs. Differences in sensitivity between methods was assessed by the Z-test. The variation in sensitivity within each method was explored by a logistic regression model, which was fitted for each of the two methods with their test result (positive/negative) as the outcome, the mean FEC of both methods as covariate, and trial as a factor (five levels: Brazil, Cameroon, India, Tanzania, and Vietnam). The final models were evaluated from the full factorial model (including interactions) by a backward selection procedure (least significant predictor was step wise omitted from the model) using the χ 2 likelihood ratio statistic. The level of significance was set at p 0.5 was set as a positive test result, and negative if different. Finally, the sensitivity for each of the observed values of the covariate and factor, was calculated based on these models (R Foundation for Statistical Computing, version 2.10.0). The NPV was calculated according the theorem of Bayes. The 95% confidence intervals (CIs) for NPV were obtained by statistical simulation (R Foundation for Statistical Computing, version 2.10.0). Quantitative agreement The agreement in quantitative test results was estimated by the Spearman rank correlation coefficient (Rs) (SAS 9.1.3, SAS Institute Inc.; Cary, NC, USA). The Wilcoxon signed rank test was used to test for differences in FEC between the methods. Furthermore, samples were subdivided into low, moderate, and high egg excretion intensities according to thresholds proposed by WHO [9]; for A. lumbricoides these were 1–4,999 EPG, 5,000–49,999 EPG, and >49,999 EPG; for T. trichiura these were 1–999 EPG, 1000–9,999 EPG, and >9,999 EPG; and for hookworm these were 1–1,999 EPG, 2,000–3,999 EPG, and >3,999 EPG, respectively. Finally, the agreement in the assignment to these three levels of egg excretion intensity by the McMaster and Kato-Katz methods was evaluated by the Cohen’s kappa statistic (κ). The value of this statistic indicates a slight (κ 80%) for each of the three STH in all trials (Table 1), except for the detection of T. trichiura (McMaster: 65.2%; Kato-Katz: 63.5%) and hookworm (McMaster: 73.4%; Kato-Katz: 72.9%) in Tanzania. In the majority of the cases, there was a large overlap in the 95% CI of both diagnostic methods, except in the Brazilian trial for the detection of A. lumbricoides (McMaster: [87.8–94.2%] vs. Kato-Katz: [100–100%]) and hookworm ([88.3–94.7%] vs. [96.9–99.7%]) and in Cameroon for T. trichiura ([70.4–90.5%] vs. [89.4–100%]). In each of these trials, the overlap was either small or absent. Agreement in quantitative test results Overall there was a significant correlation between the FEC of the McMaster and those obtained by Kato-Katz (A. lumbricoides: Rs  = 0.70, n = 312, p<0.001; T. trichiura: Rs  = 0.49, n = 345, p<0.001; hookworm: Rs  = 0.32, n = 290, p<0.001) (Table 2). Assessment of egg excretion intensity by the Kato-Katz resulted in significantly more eggs of A. lumbricoides (14,197 EPG vs. 5,982, n = 312, p<0.001), but not for hookworm (468 EPG vs. 409, n = 290, p = 0.10) and T. trichiura (784 EPG vs. 604, n = 345, p = 1.00). However, these findings were not consistent across the different trials. A significant positive correlation between both methods was found for each of the three STH in all countries (Rs  = 0.28–0.88, p<0.05), except for trials in Tanzania and Vietnam. In Tanzania, no significant correlation was found between the two methods for the quantification of hookworm eggs (Rs = −0.05, n = 116, p = 0.56), while in the trial in Vietnam, a significant negative correlation was found for T. trichiura (Rs  = −0.24, n = 107, p = 0.01) and hookworm (Rs  = −0.49, n = 51, p<0.001). A significant difference in the enumeration of STH eggs between the Kato-Katz and McMaster methods was found for Brazil, Cameroon, and Vietnam. In both the Brazilian and Cameroonian trials, the Kato-Katz method yielded higher FEC compared to the McMaster method. In the Vietnamese trial, the McMaster method resulted in detection of more T. trichiura and hookworm eggs. In trials in India and Tanzania, no significant differences between the methods were found. 10.1371/journal.pntd.0001201.t002 Table 2 The quantitative agreement in fecal egg counts (FEC) between McMaster and Kato-Katz. Country n Mean FEC (EPG) Rs (p-value) p- value for Δ FEC McMaster Kato-Katz A. lumbricoides 312 5,982 14,197 0.70 (<0.001) <0.001 Brazil 81 6,490 25,079 0.88 (<0.001) <0.001 Cameroon 61 10,643 2,0531 0.82 (<0.001) <0.001 Tanzania 74 4,460 6,876 0.58 (<0.001) 0.08 Vietnam 96 3,559 6,560 0.28 (0.015) 0.20 T. trichiura 345 604 784 0.49 (<0.001) 1.00 Cameroon 67 1,168 1,938 0.76 (<0.001) 0.001 Tanzania 171 671 769 0.38 (<0.001) 0.60 Vietnam 107 143 84 −0.24 (0.01) 0.006 Hookworm 290 409 468 0.32 (<0.001) 0.10 Brazil 84 422 796 0.66 (<0.001) <0.001 India 39 1,031 1,630 0.67 (<0.001) 0.57 Tanzania 116 300 783 −0.05 (0.56) 0.09 Vietnam 51 162 32 −0.49 (<0.001) <0.001 Rs: Spearman correlation coefficient; ΔFEC: FECKato-Katz – FECMcMaster. Overall, there was a fair agreement (0.2≤κ<0.4) between the methods in the assignment of the samples to the three levels of egg excretion intensity as recommended by WHO (A. lumbricoides: κ = 0.37 (n = 199, p<0.001); T. trichiura: κ = 0.39 (n = 217, p<0.001); hookworm: κ = 0.34 (n = 147, p<0.001). As shown in the Figure 4, the McMaster method often assigned the samples to a lower level of egg excretion intensity compared to the Kato-Katz method. 10.1371/journal.pntd.0001201.g004 Figure 4 The agreement in the assignment to egg excretion intensity obtained by McMaster and Kato-Katz. The distribution of egg excretion intensity obtained by the McMaster method (low [white], moderate [grey], and high [black] over the egg excretion intensity observed by the Kato-Katz method for A. lumbricoides (A) (n = 199), T. trichiura (B) (n = 217), and hookworm (C) (n = 147). The validity of the multiplication factor employed in the Kato-Katz The mass of feces was measured in 207 Kato-Katz thick smears (Cameroon, n = 107; Tanzania, n = 100) in order to assess the validity of the multiplication factor used. Overall, the adjusted multiplication factor was 23.7, but it was subject to considerable variation (95% CI: [14.3–66.7]). This variation was observed in both trials (Cameroon 23.3 [13.4–83.3], and Tanzania 23.7 [15.3–54.3]) (p = 0.82). Table 3 summarizes the quantitative agreement between the FEC based on the fixed and adjusted multiplication factor, respectively. There was a high correlation between both approaches (Rs  = 0.98, n = 39–146, p<0.001), regardless of in which country the trial was based. However, FEC obtained on the fixed multiplication factor were significantly higher compared to those adjusted for the mass of feces examined for A. lumbricoides (16,538 EPG vs. 15,396 EPG, n = 99, p<0.001), T. trichiura (1,490 EPG vs. 1,363 EPG, n = 146, p<0.001), but not for hookworm (351 EPG vs. 301 EPG, n = 39, p = 0.05). These findings were confirmed in both countries, though not significant in the case of A. lumbricoides in Tanzania. Despite the differences in FEC, there was a substantial to almost perfect agreement in the assignment to the different levels of egg excretion intensity between both approaches (κ A. lumbricoides  = 0.93, n = 99, p<0.001; κ T. trichiura  = 0.89, n = 146, p<0.001; κhookworm  = 0.93, n = 39, p<0.001). 10.1371/journal.pntd.0001201.t003 Table 3 The quantitative agreement in fecal egg counts (FEC) between Kato-Katz using different multiplication factors. n Mean FEC (EPG) Rs (p-value) p- value for Δ FEC Fixed Adjusted A. lumbricoides 99 16,538 15,396 0.98 (<0.001) <0.001 Cameroon 54 12,307 11,702 0.98 (<0.001) <0.001 Tanzania 45 4,527 3,953 0.98 (<0.001) 0.11 T. trichuria 146 1,490 1,363 0.98 (<0.001) <0.001 Cameroon 62 2,268 2,023 0.98 (<0.001) 0.001 Tanzania 84 904 865 0.98 (<0.001) 0.02 Hookworm 39 351 301 0.98 (<0.001) 0.05 Tanzania 39 351 301 0.98 (<0.001) 0.05 Rs: Spearman correlation coefficient; ΔFEC: FECfixed – FECadjusted. Accuracy of estimating drug efficacy Overall, the mean bias (departure from the TDE in either direction) was 1.7% for McMaster and 4.5% for Kato-Katz. The bias for each of the two methods by trials (different countries), by pre-DA FEC and by TDE are illustrated in Figure 5. The bias for McMaster did not exceed 5%. Differences in bias across trials were small (Cameroon: 0.3–4.6%; Tanzania: 0.1–3.6%; Vietnam: 0.3–4.7%), but there was a decrease in bias across both pre-DA FEC (100 EPG: 0.3–4.6%; 250 EPG: 0.3–3.8%; 500 EPG: 0.2–4.7%; 750 EPG: 0.1–2.1%; 1,000 EPG: 0.1–2.6%) and TDE (90%: 0.1–4.7%; 95%: 0.7–2.4%; 99%: 0.1–0.5%). The bias for Kato-Katz ranged from 0.01% to 25.7%, and decreased when pre-DA FEC increased (100 EPG: 5.3–25.7%; 250 EPG: 0.2–8.0%; 500 EPG: 0.5–4.4%; 750 EPG: 0.3–4.0%; 1,000 EPG: 0.1–4.0%). Across trials (Cameroon: 0.3–14.8%; Tanzania: 0.4–20.9%; Vietnam: 0.1–25.7%) and TDE (90%: 0.5–25.7%; 95%: 0.2–17.9%; 99%: 0.1–20.9%), the bias remained largely unchanged. McMaster was significantly more accurate in estimating FECR compared to Kato-Katz (p = 0.006). Yet, these differences in accuracy of FECR between the methods became non-significant when only pre-DA FEC above 100 EPG were considered (p = 0.40, McMaster: 1.6% (range: 0.01–4.7%), Kato-Katz: 2.0% (range: 0.01–8.0%)). A detailed overview of the calculations made is available in Table S1. 10.1371/journal.pntd.0001201.g005 Figure 5 The absolute bias for McMaster and Kato-Katz in the assessment of drug efficacy. The bias (i.e., absolute value of the differences between the ‘true’ drug efficacy (TDE) and the observed fecal egg count reduction) for McMaster and Kato-Katz across the different trials (countries), pre-drug administration fecal egg counts (pre-DA FEC) and ‘true’ drug efficacies (TDE) based on predictions from statistical models. Discussion In the present study, the McMaster and Kato-Katz were compared for both qualitative and quantitative detection of STH infections in human populations on a scale that is unprecedented in the literature. Moreover, we assessed (i) the consistency of the performance of these two methods across five trials in different countries, (ii) the validity of a fixed multiplication factor for the Kato-Katz, and (iii) the ability of both methods to estimate a ‘true’ drug efficacy. The qualitative comparison revealed that Kato-Katz was more sensitive for the detection of A. lumbricoides, but not for hookworm and T. trichiura. These differences in sensitivity can be explained to some extent by the intrinsic properties of the methods. In the Kato-Katz method, a larger quantity of stool is examined (Kato-Katz: 41.7 mg, McMaster: 20 mg). Moreover, this quantity of stool is determined after the larger items in fecal debris have been removed by sieving, whereas the initial quantity of stool used in the McMaster method includes large items of debris. Finally, the McMaster method is based on the flotation of eggs, but it is clear that the buoyancy of eggs differs between the different STHs. For example, it was noticed that unfertilized eggs of A. lumbricoides (heavier than fertilized ones) were rarely detected in McMaster chambers, even when a high numbers of eggs was being excreted. For both methods there was a considerable variation in sensitivity between the different trials. This variation was largely explained by intensity of egg excretion (FEC) and factors inherent to the different laboratories involved in the trials and the countries where they were located. The probability of the diagnosis of STH infections increased as the number of eggs excreted increased. Although this finding is not unexpected, it highlights the importance of quantifying infection intensity in future studies comparing diagnostic methods. This will enable ready comparison of the sensitivity reported in different studies. The differences between countries/laboratories are not easily explained and are likely multi-factorial. An important factor, which may have contributed to this difference, is human error. Although we employed standardized methods throughout based on identical written protocols, small differences in processing samples and/or examination of the slides between laboratories/countries cannot be ruled out. This is particularly the case in the use of the Kato-Katz, for which the time between processing and examination is extremely difficult to standardize (in the present study ranging from 30 to 60 min), yet crucial for the detection of hookworm eggs [12]. Similar major inter-laboratory differences also became apparent when their performance of diagnostic testing for STH was compared between European and African laboratories [11]. Therefore in future, rigorous quality control for similar studies is recommended to minimize human error. A set of control samples from the same source could have been examined independently by the different laboratories involved (so-called ring test). However, this would have required preservation of the samples, which may itself have thwarted the interpretation of the quality control, and dispatch to the laboratories involved would have resulted in different time periods between collection of sample from the donor and fixation, and eventual assessment of FEC, adding yet more variables and uncertainties to the outcome. Preservation (e.g., formaldehyde) is known to alter the morphology/density of eggs, resulting in false negative test results and an underestimation of FEC [29]. Moreover, when preserved by the addition of a preservant in a liquid formulation, it would no longer be possible to process samples as fresh samples, as normally done under field conditions, because then centrifugation would have to be implemented to discard the preservant prior to assay. This additional step, therefore, is likely not only to generate extra variation in the test results, but also to concentrate the eggs, hence increasing the sensitivity and FEC [30]. Other factors which cannot be excluded are differences in fecundity of worms [31], the number of samples containing unfertilized eggs (A. lumbricoides), the diet of subjects or the proportion of N. americanus/A. duodenale. The diet varied considerably across the five participating countries, and thus differences in the quality of food consumed would have created differences in fat and roughage content, which may have influenced the buoyancy of helminth eggs, particularly for the McMaster method as it is based on flotation of the eggs. Our study did not distinguish between N. americanus and A. duodenale eggs, yet it was remarkable that the effect of magnitude of FEC on sensitivity differed markedly between countries only for hookworm (interaction term), suggesting that sensitivity may also vary between hookworms species. At present, it remains unclear which factor(s) is (are) causing the observed variation across laboratories/countries, however, differences in sensitivity between countries for the McMaster were less pronounced compared to Kato-Katz, indicating that the McMaster is a more robust method under field conditions. The quantitative comparison revealed an overall positive correlation. Yet, the Kato-Katz method resulted in significantly higher FECs than the McMaster method for A. lumbricoides, but not for T. trichiura or hookworm. These findings partially confirm previous studies summarized by Knopp et al. (2009) [32], where differences in FEC between Kato-Katz and FLOTAC (a derivative of the McMaster method) were more pronounced for A. lumbricoides and hookworm, than for T. trichiura. It is clear that intrinsic aspects of both methods explaining the discrepancy in sensitivity for STH will also contribute to the discrepancy in FEC. In addition, it is important to bear in mind that the Kato-Katz method does not include the homogenization of a large mass of the stool sample (41.7 mg compared to 2 g for the McMaster) prior to examination, that in certain cases may result in higher counts, as eggs are not equally distributed among the sample [33], [34]. The level of quantitative agreement was not consistent across the different trials involved, but this can be explained mostly either by a small number of samples containing STH (type error II) or differences in sensitivity. The present study also confirms that the use of a fixed multiplication factor of 24 for the Kato-Katz should be revised to enable more accurate quantification of the eggs excreted [16]. Although the mean of the multiplication factor adjusted for the mass of feces examined (23.7) approached the conventially used 24, there was considerable variation in the multiplication factor across the different samples ranging from 11 to 100. Moreover, FECs based on the fixed multiplication factor resulted in significantly higher FECs compared to those based on a multiplication factor adjusted for the actual mass of feces examined, which may explain the above described difference in FEC between McMaster and Kato-Katz. The statistical simulation revealed that both methods provide reliable estimates of drug efficacies, supporting the use of both methods for monitoring large-scale treatment programs implemented for the control of STH in public health. However, the McMaster method has several advantages when a large number of samples need to be examined because the microscopy is readily performed, and all parasites can be examined simultaneously, in contrast to the Kato-Katz method where different clearing times for the different STH require re-examination at times optimal for different species [15]. These findings also confirms that FECR is preferred as a summary measure for assessment of drug efficacy, since it allows an accurate and realistic comparison of FECR across laboratories or the locations where the trials have been conducted, and this regardless of differences in sensitivity between trials. In conclusion, this multinational study highlights considerable variation in the performance of two methods used for the diagnosis of STH, particularly for the commonly used Kato-Katz. Both the McMaster and the Kato-Katz methods are valid methods for monitoring large-scale treatment administration programs. Yet, the McMaster method seems more suitable for further standardization because of its robust multiplication factor, and allowing for simultaneous detection of all species of STH. Supporting Information Checklist S1 STARD checklist (DOC) Click here for additional data file. Table S1 A detailed overview of the calculations made to assess the accuracy of estimating drug efficacy (XLS) Click here for additional data file.
                Bookmark

                Author and article information

                Journal
                Pan Afr Med J
                Pan Afr Med J
                PAMJ
                The Pan African Medical Journal
                The African Field Epidemiology Network
                1937-8688
                04 January 2019
                2019
                : 32
                : 6
                Affiliations
                [1 ]School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
                [2 ]School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
                [3 ]Applied Molecular Biology Research (AMBIOR) Group, Antwerp University, Antwerp, Belgium
                [4 ]Department of Virology, Parasitology and Immunology, University of Ghent, Belgium
                Author notes
                [& ]Corresponding author: Zeleke Mekonnen, School of Medical Laboratory Sciences, Institute of Health Jimma University, Jimma, Ethiopia
                Article
                PAMJ-32-6
                10.11604/pamj.2019.32.6.16085
                6492303
                ba087c27-875f-4458-988c-a6228ba822ec
                © Zeleke Mekonnen et al.

                The Pan African Medical Journal - ISSN 1937-8688. This is an Open Access article distributed under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 May 2018
                : 11 November 2018
                Categories
                Research

                Medicine
                soil-transmitted helminths,prevalence,intensity,seasonality,jimma,ethiopia
                Medicine
                soil-transmitted helminths, prevalence, intensity, seasonality, jimma, ethiopia

                Comments

                Comment on this article