6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Electrochemical CO2-to-CO conversion: A comprehensive review of recent developments and emerging trends

      , , , ,
      Separation and Purification Technology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: not found
          • Article: not found

          Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO

            Currently, the most active electrocatalysts for the conversion of CO 2 to CO are gold-based nanomaterials, whereas non–precious metal catalysts have shown low to modest activity. Here, we report a catalyst of dispersed single-atom iron sites that produces CO at an overpotential as low as 80 millivolts. Partial current density reaches 94 milliamperes per square centimeter at an overpotential of 340 millivolts. Operando x-ray absorption spectroscopy revealed the active sites to be discrete Fe 3+ ions, coordinated to pyrrolic nitrogen (N) atoms of the N-doped carbon support, that maintain their +3 oxidation state during electrocatalysis, probably through electronic coupling to the conductive carbon support. Electrochemical data suggest that the Fe 3+ sites derive their superior activity from faster CO 2 adsorption and weaker CO absorption than that of conventional Fe 2+ sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles.

              Carbon dioxide reduction is an essential component of many prospective technologies for the renewable synthesis of carbon-containing fuels. Known catalysts for this reaction generally suffer from low energetic efficiency, poor product selectivity, and rapid deactivation. We show that the reduction of thick Au oxide films results in the formation of Au nanoparticles ("oxide-derived Au") that exhibit highly selective CO(2) reduction to CO in water at overpotentials as low as 140 mV and retain their activity for at least 8 h. Under identical conditions, polycrystalline Au electrodes and several other nanostructured Au electrodes prepared via alternative methods require at least 200 mV of additional overpotential to attain comparable CO(2) reduction activity and rapidly lose their activity. Electrokinetic studies indicate that the improved catalysis is linked to dramatically increased stabilization of the CO(2)(•-) intermediate on the surfaces of the oxide-derived Au electrodes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Separation and Purification Technology
                Separation and Purification Technology
                Elsevier BV
                13835866
                February 2024
                February 2024
                : 330
                : 125177
                Article
                10.1016/j.seppur.2023.125177
                b9fce1d7-3699-4e5a-923d-67a28242c4a7
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article

                scite_
                19
                0
                8
                0
                Smart Citations
                19
                0
                8
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,527

                Cited by4

                Most referenced authors1,891