10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circular RNAs (circRNAs) generally bind to RNA-binding proteins (RBPs) to play an important role in the regulation of autoimmune diseases. Thus, it is crucial to study the binding sites of RBPs on circRNAs. Although many methods, including traditional machine learning and deep learning, have been developed to predict the interactions between RNAs and RBPs, and most of them are focused on linear RNAs. At present, few studies have been done on the binding relationships between circRNAs and RBPs. Thus, in-depth research is urgently needed. In the existing circRNA-RBP binding site prediction methods, circRNA sequences are the main research subjects, but the relevant characteristics of circRNAs have not been fully exploited, such as the structure and composition information of circRNA sequences. Some methods have extracted different views to construct recognition models, but how to efficiently use the multi-view data to construct recognition models is still not well studied. Considering the above problems, this paper proposes a multi-view classification method called DMSK based on multi-view deep learning, subspace learning and multi-view classifier for the identification of circRNA-RBP interaction sites. In the DMSK method, first, we converted circRNA sequences into pseudo-amino acid sequences and pseudo-dipeptide components for extracting high-dimensional sequence features and component features of circRNAs, respectively. Then, the structure prediction method RNAfold was used to predict the secondary structure of the RNA sequences, and the sequence embedding model was used to extract the context-dependent features. Next, we fed the above four views’ raw features to a hybrid network, which is composed of a convolutional neural network and a long short-term memory network, to obtain the deep features of circRNAs. Furthermore, we used view-weighted generalized canonical correlation analysis to extract four views’ common features by subspace learning. Finally, the learned subspace common features and multi-view deep features were fed to train the downstream multi-view TSK fuzzy system to construct a fuzzy rule and fuzzy inference-based multi-view classifier. The trained classifier was used to predict the specific positions of the RBP binding sites on the circRNAs. The experiments show that the prediction performance of the proposed method DMSK has been improved compared with the existing methods. The code and dataset of this study are available at https://github.com/Rebecca3150/DMSK.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          CD-HIT: accelerated for clustering the next-generation sequencing data

          Summary: CD-HIT is a widely used program for clustering biological sequences to reduce sequence redundancy and improve the performance of other sequence analyses. In response to the rapid increase in the amount of sequencing data produced by the next-generation sequencing technologies, we have developed a new CD-HIT program accelerated with a novel parallelization strategy and some other techniques to allow efficient clustering of such datasets. Our tests demonstrated very good speedup derived from the parallelization for up to ∼24 cores and a quasi-linear speedup for up to ∼8 cores. The enhanced CD-HIT is capable of handling very large datasets in much shorter time than previous versions. Availability: http://cd-hit.org. Contact: liwz@sdsc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              circBase: a database for circular RNAs

              Recently, several laboratories have reported thousands of circular RNAs (circRNAs) in animals. Numerous circRNAs are highly stable and have specific spatiotemporal expression patterns. Even though a function for circRNAs is unknown, these features make circRNAs an interesting class of RNAs as possible biomarkers and for further research. We developed a database and website, “circBase,” where merged and unified data sets of circRNAs and the evidence supporting their expression can be accessed, downloaded, and browsed within the genomic context. circBase also provides scripts to identify known and novel circRNAs in sequencing data. The database is freely accessible through the web server at http://www.circbase.org/.
                Bookmark

                Author and article information

                Contributors
                Journal
                Briefings in Bioinformatics
                Oxford University Press (OUP)
                1467-5463
                1477-4054
                September 24 2021
                Affiliations
                [1 ]Jiangnan University, Wuxi, Jiangsu 214012, China
                [2 ]School of Artificial Intelligence and Computer Science of Jiangnan University, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (LCNBI) and ZJLab, Wuxi, Jiangsu 214012, China
                [3 ]Department of Automation of Shanghai Jiao Tong University, Wuxi, Jiangsu 214012, China
                [4 ]School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry in Jiangnan University, Wuxi, Jiangsu 214012, China
                [5 ]Shanghai Jiao Tong University, Wuxi, Jiangsu 214012, China
                [6 ]Hong Kong Polytechnic University, Wuxi, Jiangsu 214012, China
                [7 ]School of Artificial Intelligence and Computer Science of Jiangnan University, Wuxi, Jiangsu 214012, China
                Article
                10.1093/bib/bbab394
                36384083
                b9df077d-96cb-41dc-b66d-440606799cac
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article