7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      IL-23R in laryngeal cancer: a cancer immunoediting process that facilitates tumor cell proliferation and results in cisplatin resistance

      1 , 1 , 2 , 3 , 4 , 2 , 1
      Carcinogenesis
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oncogenic pathogens can disturb tissue homeostasis and initiate immune responses for oncogenicity clearance and homeostasis restoration, while failed clearance and chronic inflammation may result in tumorigenesis. The primary tumor development will undergo a cancer immunoediting process, including three phases, termed elimination, equilibrium and escape. Importantly, immune-edited tumor cells can not only reduce immunogenic molecular expression but also manipulate cytokines within the tumor environment (TME) for immune evasion and tumor proliferation. Many studies have revealed that IL-23R performed an essential role in mucous inflammation and tumorigenesis, and the role of IL-23R, either in tumor-infiltrating lymphocytes (TILs) or within immune-edited tumor cells, remained largely unknown in laryngeal cancer (LC). Here, we separately analyzed the IL-23R expression in LC TILs and tumor cells and found that high IL-23R expression in tumor cells was associated with moderate and poor tumor differentiation and an unfavorable prognosis. Furthermore, the real-time quantitative polymerase chain reaction analysis revealed that human LC tissues overexpress signal transducers and activators of transcription 3 (STAT3), and the relevance analysis found this STAT3 overexpression had a significant correlation with IL-23R expression. Besides, we isolated and cultured IL-23R+ human tumor cells from the postoperation tumor sample of three LC patients, and found that rhIL-23 could phosphorylate STAT3 (pSTAT3, residue Y705), which resulted in cancer cell proliferation and cisplatin resistance. These results indicate that IL-23R was a Hallmark of cancer immunoediting process, and targeting IL-23 should be considered as a therapeutic option for laryngeal function preservation and survival improvement.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics, 2019

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2015, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2016, were collected by the National Center for Health Statistics. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2006-2015) was stable in women and declined by approximately 2% per year in men, whereas the cancer death rate (2007-2016) declined annually by 1.4% and 1.8%, respectively. The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the racial gap in cancer mortality is slowly narrowing, socioeconomic inequalities are widening, with the most notable gaps for the most preventable cancers. For example, compared with the most affluent counties, mortality rates in the poorest counties were 2-fold higher for cervical cancer and 40% higher for male lung and liver cancers during 2012-2016. Some states are home to both the wealthiest and the poorest counties, suggesting the opportunity for more equitable dissemination of effective cancer prevention, early detection, and treatment strategies. A broader application of existing cancer control knowledge with an emphasis on disadvantaged groups would undoubtedly accelerate progress against cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microenvironmental regulation of tumor progression and metastasis.

              Cancers develop in complex tissue environments, which they depend on for sustained growth, invasion and metastasis. Unlike tumor cells, stromal cell types within the tumor microenvironment (TME) are genetically stable and thus represent an attractive therapeutic target with reduced risk of resistance and tumor recurrence. However, specifically disrupting the pro-tumorigenic TME is a challenging undertaking, as the TME has diverse capacities to induce both beneficial and adverse consequences for tumorigenesis. Furthermore, many studies have shown that the microenvironment is capable of normalizing tumor cells, suggesting that re-education of stromal cells, rather than targeted ablation per se, may be an effective strategy for treating cancer. Here we discuss the paradoxical roles of the TME during specific stages of cancer progression and metastasis, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.
                Bookmark

                Author and article information

                Contributors
                Journal
                Carcinogenesis
                Oxford University Press (OUP)
                0143-3334
                1460-2180
                January 01 2021
                February 11 2021
                June 12 2020
                January 01 2021
                February 11 2021
                June 12 2020
                : 42
                : 1
                : 118-126
                Affiliations
                [1 ]Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
                [2 ]Department of Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
                [3 ]Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
                [4 ]Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
                Article
                10.1093/carcin/bgaa058
                32526010
                b9d7efe4-f1b0-430d-8a5b-fa7537d2247d
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article