0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Smart Strawberry Farming Using Edge Computing and IoT

      , , ,
      Sensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Strawberries are sensitive fruits that are afflicted by various pests and diseases. Therefore, there is an intense use of agrochemicals and pesticides during production. Due to their sensitivity, temperatures or humidity at extreme levels can cause various damages to the plantation and to the quality of the fruit. To mitigate the problem, this study developed an edge technology capable of handling the collection, analysis, prediction, and detection of heterogeneous data in strawberry farming. The proposed IoT platform integrates various monitoring services into one common platform for digital farming. The system connects and manages Internet of Things (IoT) devices to analyze environmental and crop information. In addition, a computer vision model using Yolo v5 architecture searches for seven of the most common strawberry diseases in real time. This model supports efficient disease detection with 92% accuracy. Moreover, the system supports LoRa communication for transmitting data between the nodes at long distances. In addition, the IoT platform integrates machine learning capabilities for capturing outliers in collected data, ensuring reliable information for the user. All these technologies are unified to mitigate the disease problem and the environmental damage on the plantation. The proposed system is verified through implementation and tested on a strawberry farm, where the capabilities were analyzed and assessed.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          A Unified Approach to Interpreting Model Predictions

          Understanding why a model makes a certain prediction can be as crucial as the prediction's accuracy in many applications. However, the highest accuracy for large modern datasets is often achieved by complex models that even experts struggle to interpret, such as ensemble or deep learning models, creating a tension between accuracy and interpretability. In response, various methods have recently been proposed to help users interpret the predictions of complex models, but it is often unclear how these methods are related and when one method is preferable over another. To address this problem, we present a unified framework for interpreting predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature an importance value for a particular prediction. Its novel components include: (1) the identification of a new class of additive feature importance measures, and (2) theoretical results showing there is a unique solution in this class with a set of desirable properties. The new class unifies six existing methods, notable because several recent methods in the class lack the proposed desirable properties. Based on insights from this unification, we present new methods that show improved computational performance and/or better consistency with human intuition than previous approaches. To appear in NIPS 2017
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Deep Learning for Computer Vision: A Brief Review

            Over the last years deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields, with computer vision being one of the most prominent cases. This review paper provides a brief overview of some of the most significant deep learning schemes used in computer vision problems, that is, Convolutional Neural Networks, Deep Boltzmann Machines and Deep Belief Networks, and Stacked Denoising Autoencoders. A brief account of their history, structure, advantages, and limitations is given, followed by a description of their applications in various computer vision tasks, such as object detection, face recognition, action and activity recognition, and human pose estimation. Finally, a brief overview is given of future directions in designing deep learning schemes for computer vision problems and the challenges involved therein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scikit-learn: Machine Learning in Python

              Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.org. Update authors list and URLs
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SENSC9
                Sensors
                Sensors
                MDPI AG
                1424-8220
                August 2022
                August 05 2022
                : 22
                : 15
                : 5866
                Article
                10.3390/s22155866
                b9b388a6-ba0c-4959-a1e9-d2625ece22b8
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article