12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects.

          Biochemical conversion of lignocellulosic feedstocks to advanced biofuels and other commodities through a sugar-platform process involves a pretreatment step enhancing the susceptibility of the cellulose to enzymatic hydrolysis. A side effect of pretreatment is formation of lignocellulose-derived by-products that inhibit microbial and enzymatic biocatalysts. This review provides an overview of the formation of inhibitory by-products from lignocellulosic feedstocks as a consequence of using different pretreatment methods and feedstocks as well as an overview of different strategies used to alleviate problems with inhibitors. As technologies for biorefining of lignocellulose become mature and are transferred from laboratory environments to industrial contexts, the importance of management of inhibition problems is envisaged to increase as issues that become increasingly relevant will include the possibility to use recalcitrant feedstocks, obtaining high product yields and high productivity, minimizing the charges of enzymes and microorganisms, and using high solids loadings to obtain high product titers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review

            Lignocellulosic feedstock materials are the most abundant renewable bioresource material available on earth. It is primarily composed of cellulose, hemicellulose, and lignin, which are strongly associated with each other. Pretreatment processes are mainly involved in effective separation of these complex interlinked fractions and increase the accessibility of each individual component, thereby becoming an essential step in a broad range of applications particularly for biomass valorization. However, a major hurdle is the removal of sturdy and rugged lignin component which is highly resistant to solubilization and is also a major inhibitor for hydrolysis of cellulose and hemicellulose. Moreover, other factors such as lignin content, crystalline, and rigid nature of cellulose, production of post-pretreatment inhibitory products and size of feed stock particle limit the digestibility of lignocellulosic biomass. This has led to extensive research in the development of various pretreatment processes. The major pretreatment methods include physical, chemical, and biological approaches. The selection of pretreatment process depends exclusively on the application. As compared to the conventional single pretreatment process, integrated processes combining two or more pretreatment techniques is beneficial in reducing the number of process operational steps besides minimizing the production of undesirable inhibitors. However, an extensive research is still required for the development of new and more efficient pretreatment processes for lignocellulosic feedstocks yielding promising results.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An overview of advances in biomass gasification

              The article reviews diverse areas of conventional and advanced biomass gasification discussing their feasibility and sustainability vis-à-vis technological and socio-environmental impacts. Biomass gasification is a widely used thermochemical process for obtaining products with more value and potential applications than the raw material itself. Cutting-edge, innovative and economical gasification techniques with high efficiencies are a prerequisite for the development of this technology. This paper delivers an assessment on the fundamentals such as feedstock types, the impact of different operating parameters, tar formation and cracking, and modelling approaches for biomass gasification. Furthermore, the authors comparatively discuss various conventional mechanisms for gasification as well as recent advances in biomass gasification. Unique gasifiers along with multi-generation strategies are discussed as a means to promote this technology into alternative applications, which require higher flexibility and greater efficiency. A strategy to improve the feasibility and sustainability of biomass gasification is via technological advancement and the minimization of socio-environmental effects. This paper sheds light on diverse areas of biomass gasification as a potentially sustainable and environmentally friendly technology.
                Bookmark

                Author and article information

                Journal
                Bioresource Technology
                Bioresource Technology
                Elsevier BV
                09608524
                April 2021
                April 2021
                : 326
                : 124733
                Article
                10.1016/j.biortech.2021.124733
                33494006
                b9ad8a99-7d37-476d-bd99-0f9a04e7ea5e
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article