17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogenomics and the first higher taxonomy of Placozoa, an ancient and enigmatic animal phylum

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Placozoa is an ancient phylum of extraordinarily unusual animals: miniscule, ameboid creatures that lack most fundamental animal features. Despite high genetic diversity, only recently have the second and third species been named. While prior genomic studies suffer from incomplete placozoan taxon sampling, we more than double the count with protein sequences from seven key genomes and produce the first nuclear phylogenomic reconstruction of all major placozoan lineages. This leads us to the first complete Linnaean taxonomic classification of Placozoa, over a century after its discovery: This may be the only time in the 21st century when an entire higher taxonomy for a whole animal phylum is formalized. Our classification establishes 2 new classes, 4 new orders, 3 new families, 1 new genus, and 1 new species, namely classes Polyplacotomia and Uniplacotomia; orders Polyplacotomea, Trichoplacea, Cladhexea, and Hoilungea; families Polyplacotomidae, Cladtertiidae, and Hoilungidae; and genus Cladtertia with species Cladtertia collaboinventa, nov. Our likelihood and gene content tree topologies refine the relationships determined in previous studies. Adding morphological data into our phylogenomic matrices suggests sponges (Porifera) as the sister to other animals, indicating that modest data addition shifts this node away from comb jellies (Ctenophora). Furthermore, by adding the first genomic protein data of the exceptionally distinct and branching Polyplacotoma mediterranea, we solidify its position as sister to all other placozoans; a divergence we estimate to be over 400 million years old. Yet even this deep split sits on a long branch to other animals, suggesting a bottleneck event followed by diversification. Ancestral state reconstructions indicate large shifts in gene content within Placozoa, with Hoilungia hongkongensis and its closest relatives having the most unique genetics.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

            We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Basic local alignment search tool.

              A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.
                Bookmark

                Author and article information

                Journal
                Frontiers in Ecology and Evolution
                Front. Ecol. Evol.
                Frontiers Media SA
                2296-701X
                December 8 2022
                December 8 2022
                : 10
                Article
                10.3389/fevo.2022.1016357
                b9916b34-a739-4ae9-8271-bf1a496ef181
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article