5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atmospheric pollution from ships and its impact on local air quality at a port site in Shanghai

      , , , , , , ,
      Atmospheric Chemistry and Physics
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Growing shipping activities in port areas have generated negative impacts on climate, air quality and human health. To better evaluate the environmental impact of ship emissions, an experimental characterization of air pollution from ships was conducted in Shanghai Port in the summer of 2016. The ambient concentrations of gaseous NO, NO2, SO2 and O3 in addition to fine particulate matter concentrations (PM2.5), particle size distributions and the chemical composition of individual particles from ship emission were continuously monitored for 3 months. Ship emission plumes were visible at the port site in terms of clear peaks in the gaseous species and particulate matter concentrations. The SO2 and vanadium particle numbers were found to correlate best with ship emissions in Shanghai Port. Single-particle data showed that ship emission particles at the port site mainly concentrated in a smaller size range (<0.4 µm), where their number contributions were more important than their mass contributions to ambient particulate matter. The composition of ship emission particles at the port site suggested that they were mostly freshly emitted particles: their mass spectra were dominated by peaks of sulfate, elemental carbon (EC), and trace metals such as V, Ni, Fe and Ca, in addition to displaying very low nitrate signals. The gaseous NOx composition in some cases of plumes showed evidence of atmospheric transformation by ambient O3, which subsequently resulted in O3 depletion in the area. Quantitative estimations in this study showed that ship emissions contributed 36.4 % to SO2, 0.7 % to NO, 5.1 % to NO2, −0.9 % to O3, 5.9 % to PM2.5 and 49.5 % to vanadium particles in the port region if land-based emissions were included, and 57.2 % to SO2, 71.9 % to NO, 30.4 % to NO2, −16.6 % to O3, 27.6 % to PM2.5 and 77.0 % to vanadium particles if land-based emissions were excluded.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Mortality from ship emissions: a global assessment.

          Epidemiological studies consistently link ambient concentrations of particulate matter (PM) to negative health impacts, including asthma, heart attacks, hospital admissions, and premature mortality. We model ambient PM concentrations from oceangoing ships using two geospatial emissions inventories and two global aerosol models. We estimate global and regional mortalities by applying ambient PM increases due to ships to cardiopulmonary and lung cancer concentration-risk functions and population models. Our results indicate that shipping-related PM emissions are responsible for approximately 60,000 cardiopulmonary and lung cancer deaths annually, with most deaths occurring near coastlines in Europe, East Asia, and South Asia. Under current regulation and with the expected growth in shipping activity, we estimate that annual mortalities could increase by 40% by 2012.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Impact of maritime transport emissions on coastal air quality in Europe

                Bookmark

                Author and article information

                Contributors
                Journal
                Atmospheric Chemistry and Physics
                Atmos. Chem. Phys.
                Copernicus GmbH
                1680-7324
                2019
                May 14 2019
                : 19
                : 9
                : 6315-6330
                Article
                10.5194/acp-19-6315-2019
                b948c80c-f069-4036-b2be-96af34434217
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article