1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Role of Acute Phase Proteins: Local Production Is an Ancient, General Stress-Response System of Mammalian Cells

      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prevailing general view of acute-phase proteins (APPs) is that they are produced by the liver in response to the stress of the body as part of a systemic acute-phase response. We demonstrated a coordinated, local production of these proteins upon cell stress by the stressed cells. The local, stress-induced APP production has been demonstrated in different tissues (kidney, breast cancer) and with different stressors (hypoxia, fibrosis and electromagnetic heat). Thus, this local acute-phase response (APR) seems to be a universal mechanism. APP production is an ancient defense mechanism observed in nematodes and fruit flies as well. Local APP production at the tissue level is also supported by sporadic literature data for single proteins; however, the complex, coordinated, local appearance of this stress response has been first demonstrated only recently. Although a number of literature data are available for the local production of single acute-phase proteins, their interpretation as a local, coordinated stress response is new. A better understanding of the role of APPs in cellular stress response may also be of diagnostic/prognostic and therapeutic significance.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Acute-Phase Proteins and Other Systemic Responses to Inflammation

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adipokines: inflammation and the pleiotropic role of white adipose tissue.

            White adipose tissue is now recognised to be a multifunctional organ; in addition to the central role of lipid storage, it has a major endocrine function secreting several hormones, notably leptin and adiponectin, and a diverse range of other protein factors. These various protein signals have been given the collective name 'adipocytokines' or 'adipokines'. However, since most are neither 'cytokines' nor 'cytokine-like', it is recommended that the term 'adipokine' be universally adopted to describe a protein that is secreted from (and synthesised by) adipocytes. It is suggested that the term is restricted to proteins secreted from adipocytes, excluding signals released only by the other cell types (such as macrophages) in adipose tissue. The adipokinome (which together with lipid moieties released, such as fatty acids and prostaglandins, constitute the secretome of fat cells) includes proteins involved in lipid metabolism, insulin sensitivity, the alternative complement system, vascular haemostasis, blood pressure regulation and angiogenesis, as well as the regulation of energy balance. In addition, there is a growing list of adipokines involved in inflammation (TNFalpha, IL-1beta, IL-6, IL-8, IL-10, transforming growth factor-beta, nerve growth factor) and the acute-phase response (plasminogen activator inhibitor-1, haptoglobin, serum amyloid A). Production of these proteins by adipose tissue is increased in obesity, and raised circulating levels of several acute-phase proteins and inflammatory cytokines has led to the view that the obese are characterised by a state of chronic low-grade inflammation, and that this links causally to insulin resistance and the metabolic syndrome. It is, however, unclear as to the extent to which adipose tissue contributes quantitatively to the elevated circulating levels of these factors in obesity and whether there is a generalised or local state of inflammation. The parsimonious view is that the increased production of inflammatory cytokines and acute-phase proteins by adipose tissue in obesity relates primarily to localised events within the expanding fat depots. It is suggested that these events reflect hypoxia in parts of the growing adipose tissue mass in advance of angiogenesis, and involve the key controller of the cellular response to hypoxia, the transcription factor hypoxia inducible factor-1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Haptoglobin, inflammation and disease.

              Haptoglobin is an acute phase protein that scavenges haemoglobin in the event of intravascular or extravascular haemolysis. The protein exists in humans as three main phenotypes, Hp1-1, Hp2-2 and Hp2-1. Accumulated data on the protein's function has established its strong association with diseases that have inflammatory causes. These include parasitic (malaria), infectious (HIV, tuberculosis) and non-infectious diseases (diabetes, cardiovascular disease and obesity) among others. Phenotype-dependent poor disease outcomes have been linked with the Hp2-2 phenotype. The present review brings this association into perspective by looking at the functions of the protein and how defects in these functions associated with the Hp2 allele affect disease outcome. A model is provided to explain the mechanism, which appears to be largely immunomodulatory.
                Bookmark

                Author and article information

                Contributors
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                March 2022
                March 10 2022
                : 23
                : 6
                : 2972
                Article
                10.3390/ijms23062972
                35328392
                b9021fb8-d875-4c3c-965c-9a69be4b4dc2
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article