6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Converging evidence suggests that females and males show different responses to stress; however, little is known about the mechanism underlying the sexually dimorphic effects of stress. In this study, we found that young female rats exposed to 1 week of repeated restraint stress show no negative effects on temporal order recognition memory (TORM), a cognitive process controlled by the prefrontal cortex (PFC), which was contrary to the impairment in TORM observed in stressed males. Concomitantly, normal glutamatergic transmission and glutamate receptor surface expression in PFC pyramidal neurons were found in repeatedly stressed females, in contrast to the significant reduction seen in stressed males. The detrimental effects of repeated stress on TORM and glutamate receptors were unmasked in stressed females when estrogen receptors were inhibited or knocked down in PFC, and were prevented in stressed males with the administration of estradiol. Blocking aromatase, the enzyme for the biosynthesis of estrogen, revealed the stress-induced glutamatergic deficits and memory impairment in females, and the level of aromatase was significantly higher in the PFC of females than in males. These results suggest that estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and PFC-dependent cognition, which may underlie the stress resilience of females.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: not found
          • Article: not found

          Cellular basis of working memory

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic dysfunction in depression: potential therapeutic targets.

            Basic and clinical studies demonstrate that depression is associated with reduced size of brain regions that regulate mood and cognition, including the prefrontal cortex and the hippocampus, and decreased neuronal synapses in these areas. Antidepressants can block or reverse these neuronal deficits, although typical antidepressants have limited efficacy and delayed response times of weeks to months. A notable recent discovery shows that ketamine, a N-methyl-D-aspartate receptor antagonist, produces rapid (within hours) antidepressant responses in patients who are resistant to typical antidepressants. Basic studies show that ketamine rapidly induces synaptogenesis and reverses the synaptic deficits caused by chronic stress. These findings highlight the central importance of homeostatic control of mood circuit connections and form the basis of a synaptogenic hypothesis of depression and treatment response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission.

              Mounting evidence suggests that acute and chronic stress, especially the stress-induced release of glucocorticoids, induces changes in glutamate neurotransmission in the prefrontal cortex and the hippocampus, thereby influencing some aspects of cognitive processing. In addition, dysfunction of glutamatergic neurotransmission is increasingly considered to be a core feature of stress-related mental illnesses. Recent studies have shed light on the mechanisms by which stress and glucocorticoids affect glutamate transmission, including effects on glutamate release, glutamate receptors and glutamate clearance and metabolism. This new understanding provides insights into normal brain functioning, as well as the pathophysiology and potential new treatments of stress-related neuropsychiatric disorders.
                Bookmark

                Author and article information

                Journal
                Molecular Psychiatry
                Mol Psychiatry
                Springer Science and Business Media LLC
                1359-4184
                1476-5578
                May 2014
                July 9 2013
                May 2014
                : 19
                : 5
                : 588-598
                Article
                10.1038/mp.2013.83
                23835908
                b8eb204b-2bb3-4052-9726-b8724832551b
                © 2014

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article