56
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of novel candidate genes for follicle selection in the broiler breeder ovary

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Broiler breeders fed ad libitum are characterised by multiple ovulation, which leads to poor shell quality and egg production. Multiple ovulation is controlled by food restriction in commercial flocks. However, the level of food restriction raises welfare concerns, including that of severe hunger. Reducing the rate of multiple ovulation by genetic selection would facilitate progress towards developing a growth profile for optimum animal welfare.

          Results

          The study utilised 3 models of ovarian follicle development; laying hens fed ad libitum (experiment 2) and broiler breeders fed ad libitum or a restricted diet (experiments 1 & 3). This allowed us to investigate gene candidates for follicular development by comparing normal, abnormal and “controlled” follicle hierarchies at different stages of development. Several candidate genes for multiple ovulation were identified by combining microarray analysis of restricted vs. ad libitum feeding, literature searches and QPCR expression profiling throughout follicle development. Three candidate genes were confirmed by QPCR as showing significant differential expression between restricted and ad libitum feeding: FSHR, GDF9 and PDGFRL. PDGFRL, a candidate for steroidogenesis, showed significantly up-regulated expression in 6–8 mm follicles of ad libitum fed broiler breeders ( P = 0.016), the period at which follicle recruitment occurs.

          Conclusions

          Gene candidates have been identified and evidence provided to support a possible role in regulation of ovarian function and follicle number. Further characterisation of these genes will be required to assess their potential for inclusion into breeding programmes to improve the regulation of follicle selection and reduce the need for feed restriction.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Ovarian follicular growth and development in mammals.

          J Fortune (1994)
          Evidence from several species indicates that the initial stages of follicular growth proceed very slowly. In contrast, the stages after antrum formation are much more rapid. Atresia seems to be most prevalent as follicles approach the size at which they could be recruited for potential ovulation. Although most follicles become atretic around that stage, a few are recruited into a cohort or wave of follicles that continue to grow beyond the stage at which atresia normally occurs. Next, a species-specific number of follicles is selected for dominance. In some species (e.g. rats, primates, pigs), dominant follicles develop only during the follicular phase and are thus destined for ovulation. In another group of species (e.g. cattle, sheep, horses), recruitment, selection, and dominance occur at regular intervals, but only the dominant follicle present during the follicular phase ovulates. There is evidence that the mechanism that allows some follicles to be recruited for potential dominance/ovulation is a small elevation in basal FSH that, by chance, occurs around the time the follicle would normally begin atresia. Some recruited follicles are saved from atresia for only a short time. Only the dominant follicle(s) selected from among the recruited follicles grows to ovulatory or near-ovulatory size. What determines which follicle(s) becomes dominant is not known, but dominance appears to be maintained by negative feedback effects of products of the dominant follicle on circulating FSH. Selection and dominance are accompanied by progressive increases in the ability of thecal cells to produce androgen and granulosa cells to aromatize androgen to estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Why don't birds lay more eggs?

            Fifty years ago David Lack put forward a key hypothesis in life-history theory: that avian clutch is ultimately determined by the number of young that parents can provide with food. Since then, a plethora of brood manipulations has shown that birds can rear more young than the number of eggs they lay, and prompted a search for negative effects of increased effort on future reproduction. However, recent studies have shown that the demands of laying and incubating eggs generally omitted from experiments, could affect parental fitness. Lack's hypothesis, and the tests of its validity, need to be extended to encompass the full demands of producing and rearing the brood.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oligomerization of the mitochondrial protein voltage-dependent anion channel is coupled to the induction of apoptosis.

              Accumulating evidence implicates that the voltage-dependent anion channel (VDAC) functions in mitochondrion-mediated apoptosis and as a critical player in the release of apoptogenic proteins, such as cytochrome c, triggering caspase activation and apoptosis. The mechanisms regulating cytochrome c release and the molecular architecture of the cytochrome c-conducting channel remain unknown. Here the relationship between VDAC oligomerization and the induction of apoptosis was examined. We demonstrated that apoptosis induction by various stimuli was accompanied by highly increased VDAC oligomerization, as revealed by cross-linking and directly monitored in living cells using bioluminescence resonance energy transfer technology. VDAC oligomerization was induced in all cell types and with all apoptosis inducers used, including staurosporine, curcumin, As(2)O(3), etoposide, cisplatin, selenite, tumor necrosis factor alpha (TNF-α), H(2)O(2), and UV irradiation, all acting through different mechanisms yet all involving mitochondria. Moreover, correlation between the levels of VDAC oligomerization and apoptosis was observed. Furthermore, the apoptosis inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) inhibited VDAC oligomerization. Finally, a caspase inhibitor had no effect on VDAC oligomerization and cytochrome c release. We propose that VDAC oligomerization is involved in mitochondrion-mediated apoptosis and may represent a general mechanism common to numerous apoptogens acting via different initiating cascades. Thus, targeting the oligomeric status of VDAC, and hence apoptosis, offers a therapeutic strategy for combating cancers and neurodegenerative diseases.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2012
                19 September 2012
                : 13
                : 494
                Affiliations
                [1 ]The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
                Article
                1471-2164-13-494
                10.1186/1471-2164-13-494
                3511242
                22992265
                b86bec08-dbb7-48c2-afbd-c45806b51562
                Copyright ©2012 McDerment et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 April 2012
                : 14 September 2012
                Categories
                Research Article

                Genetics
                broiler breeder,follicle development,microarray,multiple ovulation,ovary
                Genetics
                broiler breeder, follicle development, microarray, multiple ovulation, ovary

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content204

                Cited by16

                Most referenced authors443