47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Designed biosynthesis of 25-methyl and 25-ethyl ivermectin with enhanced insecticidal activity by domain swap of avermectin polyketide synthase

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Avermectin and milbemycin are important 16-membered macrolides that have been widely used as pesticides in agriculture. However, the wide use of these pesticides inevitably causes serious drug resistance, it is therefore imperative to develop new avermectin and milbemycin analogs. The biosynthetic gene clusters of avermectin and milbemycin have been identified and the biosynthetic pathways have been elucidated. Combinatorial biosynthesis by domain swap provides an efficient strategy to generate chemical diversity according to the module polyketide synthase (PKS) assembly line.

          Results

          The substitution of aveDH2-KR2 located in avermectin biosynthetic gene cluster in the industrial avermectin-producing strain Streptomyces avermitilis NA-108 with the DNA regions milDH2-ER2-KR2 located in milbemycin biosynthetic gene cluster in Streptomyces bingchenggensis led to S. avermitilis AVE-T27, which produced ivermectin B1a with high yield of 3450 ± 65 μg/ml. The subsequent replacement of aveLAT-ACP encoding the loading module of avermectin PKS with milLAT-ACP encoding the loading module of milbemycin PKS led to strain S. avermitilis AVE-H39, which produced two new avermectin derivatives 25-ethyl and 25-methyl ivermectin ( 1 and 2) with yields of 951 ± 46 and 2093 ± 61 μg/ml, respectively. Compared to commercial insecticide ivermectin, the mixture of 25-methyl and 25-ethyl ivermectin ( 2: 1 = 3:7) exhibited 4.6-fold increase in insecticidal activity against Caenorhabditis elegans. Moreover, the insecticidal activity of the mixture of 25-methyl and 25-ethyl ivermectin was 2.5-fold and 5.7-fold higher than that of milbemycin A3/A4 against C. elegans and the second-instar larva of Mythimna separate, respectively.

          Conclusions

          Two new avermectin derivatives 25-methyl and 25-ethyl ivermectin were generated by the domain swap of avermectin PKS. The enhanced insecticidal activity of 25-methyl and 25-ethyl ivermectin implied the potential use as insecticide in agriculture. Furthermore, the high yield and genetic stability of the engineered strains S. avermitilis AVE-T27 and AVE-H39 suggested the enormous potential in industrial production of the commercial insecticide ivermectin and 25-methyl/25-ethyl ivermectins, respectively.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12934-015-0337-y) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Combinatorial biosynthesis of reduced polyketides.

          The bacterial multienzyme polyketide synthases (PKSs) produce a diverse array of products that have been developed into medicines, including antibiotics and anticancer agents. The modular genetic architecture of these PKSs suggests that it might be possible to engineer the enzymes to produce novel drug candidates, a strategy known as 'combinatorial biosynthesis'. So far, directed engineering of modular PKSs has resulted in the production of more than 200 new polyketides, but key challenges remain before the potential of combinatorial biosynthesis can be fully realized.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Review on the Toxicity and Non-Target Effects of Macrocyclic Lactones in Terrestrial and Aquatic Environments

            The avermectins, milbemycins and spinosyns are collectively referred to as macrocyclic lactones (MLs) which comprise several classes of chemicals derived from cultures of soil micro-organisms. These compounds are extensively and increasingly used in veterinary medicine and agriculture. Due to their potential effects on non-target organisms, large amounts of information on their impact in the environment has been compiled in recent years, mainly caused by legal requirements related to their marketing authorization or registration. The main objective of this paper is to critically review the present knowledge about the acute and chronic ecotoxicological effects of MLs on organisms, mainly invertebrates, in the terrestrial and aquatic environment. Detailed information is presented on the mode-of-action as well as the ecotoxicity of the most important compounds representing the three groups of MLs. This information, based on more than 360 references, is mainly provided in nine tables, presenting the effects of abamectin, ivermectin, eprinomectin, doramectin, emamectin, moxidectin, and spinosad on individual species of terrestrial and aquatic invertebrates as well as plants and algae. Since dung dwelling organisms are particularly important non-targets, as they are exposed via dung from treated animals over their whole life-cycle, the information on the effects of MLs on dung communities is compiled in an additional table. The results of this review clearly demonstrate that regarding environmental impacts many macrocyclic lactones are substances of high concern particularly with larval instars of invertebrates. Recent studies have also shown that susceptibility varies with life cycle stage and impacts can be mitigated by using MLs when these stages are not present. However information on the environmental impact of the MLs is scattered across a wide range of specialised scientific journals with research focusing mainly on ivermectin and to a lesser extent on abamectin doramectin and moxidectin. By comparison, information on compounds such as eprinomectin, emamectin and selamectin is still relatively scarce.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ivermectin: panacea for resource-poor communities?

              The 2014 Gairdner Global Health Award was conferred for discovery of the unique microorganism that is the sole source of the endectocidal avermectins, and the Public sector/Private sector Partnership that developed innovative biopharmaceuticals with immeasurably beneficial impact on public health worldwide. Ivermectin is already labelled a 'wonder drug', essential for campaigns to eliminate two disfiguring and devastating tropical diseases. New uses for it are identified regularly, including possible antibacterial, antiviral, and anticancer potential. Hundreds of millions of people are taking ivermectin to combat various diseases and afflictions, and mass administration of ivermectin in polyparasitised poor communities around the world is increasingly recognised as a mechanism to easily and cost-effectively improve overall health and quality of life for everyone.
                Bookmark

                Author and article information

                Contributors
                zhangji@neau.edu.cn
                quasar110@126.com
                Ajsyz1987@163.com
                sxhuang@mail.kib.ac.cn
                wangneau2013@163.com
                xiangwensheng@neau.edu.cn
                Journal
                Microb Cell Fact
                Microb. Cell Fact
                Microbial Cell Factories
                BioMed Central (London )
                1475-2859
                24 September 2015
                24 September 2015
                2015
                : 14
                : 152
                Affiliations
                [ ]School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030 China
                [ ]State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
                [ ]Kunming Institute of Botany, Chinese Academy of Sciences, No. 132 Lanhei Road, Panlong District, Kunming, 650201 China
                Article
                337
                10.1186/s12934-015-0337-y
                4581413
                b83b4e23-2c41-4bc6-8c6d-2ba4faccb164
                © Zhang et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 June 2015
                : 10 September 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Biotechnology
                25-ethyl ivermectin,25-methyl ivermectin,domain swap,insecticidal activity
                Biotechnology
                25-ethyl ivermectin, 25-methyl ivermectin, domain swap, insecticidal activity

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content74

                Cited by9

                Most referenced authors513