3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization

      1 , 1 , 1 , 1 , 1
      Angewandte Chemie
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references211

          • Record: found
          • Abstract: found
          • Article: not found

          Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives

          We review the fundamental aspects of metal oxides, metal chalcogenides and metal pnictides as effective electrocatalysts for the oxygen evolution reaction. There is still an ongoing effort to search for sustainable, clean and highly efficient energy generation to satisfy the energy needs of modern society. Among various advanced technologies, electrocatalysis for the oxygen evolution reaction (OER) plays a key role and numerous new electrocatalysts have been developed to improve the efficiency of gas evolution. Along the way, enormous effort has been devoted to finding high-performance electrocatalysts, which has also stimulated the invention of new techniques to investigate the properties of materials or the fundamental mechanism of the OER. This accumulated knowledge not only establishes the foundation of the mechanism of the OER, but also points out the important criteria for a good electrocatalyst based on a variety of studies. Even though it may be difficult to include all cases, the aim of this review is to inspect the current progress and offer a comprehensive insight toward the OER. This review begins with examining the theoretical principles of electrode kinetics and some measurement criteria for achieving a fair evaluation among the catalysts. The second part of this review acquaints some materials for performing OER activity, in which the metal oxide materials build the basis of OER mechanism while non-oxide materials exhibit greatly promising performance toward overall water-splitting. Attention of this review is also paid to in situ approaches to electrocatalytic behavior during OER, and this information is crucial and can provide efficient strategies to design perfect electrocatalysts for OER. Finally, the OER mechanism from the perspective of both recent experimental and theoretical investigations is discussed, as well as probable strategies for improving OER performance with regards to future developments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photocatalytic Reduction of CO2on TiO2and Other Semiconductors

            Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent advances in catalytic hydrogenation of carbon dioxide.

              Owing to the increasing emissions of carbon dioxide (CO(2)), human life and the ecological environment have been affected by global warming and climate changes. To mitigate the concentration of CO(2) in the atmosphere various strategies have been implemented such as separation, storage, and utilization of CO(2). Although it has been explored for many years, hydrogenation reaction, an important representative among chemical conversions of CO(2), offers challenging opportunities for sustainable development in energy and the environment. Indeed, the hydrogenation of CO(2) not only reduces the increasing CO(2) buildup but also produces fuels and chemicals. In this critical review we discuss recent developments in this area, with emphases on catalytic reactivity, reactor innovation, and reaction mechanism. We also provide an overview regarding the challenges and opportunities for future research in the field (319 references).
                Bookmark

                Author and article information

                Contributors
                Journal
                Angewandte Chemie
                Angewandte Chemie
                Wiley
                0044-8249
                1521-3757
                September 13 2021
                May 05 2021
                September 13 2021
                : 133
                : 38
                : 20795-20816
                Affiliations
                [1 ]Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
                Article
                10.1002/ange.202101818
                b836d054-d949-4ebc-88b0-4f4f6d20fd10
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article